## Physicochemical properties of nanostructured Pd/lanthanide-doped ceria spheres with high catalytic activity for CH<sub>4</sub> combustion.

Rodolfo O. Fuentes<sup>\*1,2</sup>, Leandro M. Acuña<sup>2,3</sup>, A. Gabriela Leyva<sup>1,4</sup>, Richard T. Baker<sup>5</sup>, Huiyan Pan<sup>6</sup>, Xiaowei Chen<sup>6</sup> and Juan J. Delgado-Jaén<sup>6</sup>.

<sup>1</sup>Instituto de Nanociencia y Nanotecnología, Departamento de Física, Centro Atómico Constituyentes, CONICET-CNEA, Av. Gral. Paz 1499, (1650) San Martín, Buenos Aires, Argentina.

<sup>2</sup> CONICET, Buenos Aires, Argentina.

<sup>3</sup>DEINSO (Departamento de Investigaciones en Sólidos), UNIDEF-CITEDEF, J.B. de la Salle 4397, (1603) Villa Martelli, Buenos Aires, Argentina.

<sup>4</sup> Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, M de

Yrigoyen3100, (1650) San Martín, Buenos Aires, Argentina.

<sup>5</sup>EaStChem, School of Chemistry, University of St. Andrews, North Haugh, St.

Andrews, Fife, KY16 9ST, United Kingdom.

<sup>6</sup> Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Universidad de Cádiz, Campus Río San Pedro, Puerto Real, Cádiz, Spain.

\*Corresponding author's contact information: e-mail: rofuentes@conicet.gov.ar Phone: +541167757111



**Figure S1.** Elemental profiles along the lines indicated for three (a-c) diametrical sections through the same 1%wt Pd/PrDC sphere.



**Figure S2.** Electron (HAADF) image (a) and corresponding distribution maps for the elements Ce (b), Pd (c) and O (d) in two 1%wt Pd/PrDC spheres.



**Figure S3.** Expanded area of the SR-XRD patterns of 1 wt% Pd/LnDC samples in the vicinity of PdO (100) at room temperature (circles) with the Rietveld-fitted pattern (red line), a) not including and b) including a second phase of PdO.



**Figure S4.** Synchrotron XRD patterns recorded at 500 °C (empty circles) with the Rietveld-fitted pattern (red line) and the difference plot for 1 wt% Pd/GDC spheres under (a) reducing and oxidizing (b) conditions.



**Figure S5**. Synchrotron XRD patterns recorded at 500 °C (empty circles) with the Rietveld-fitted pattern (red line) and the difference plot for 1 wt% Pd/PrDC spheres under (a) reducing and (b) oxidizing conditions.

| Atmosphere   | Air*      | 5%H <sub>2</sub> /He | Air*      |
|--------------|-----------|----------------------|-----------|
| $T(^{o}C)$   | 25        | 500                  | 500       |
| <i>a</i> (Å) | 5.4192(6) | 5.4514(8)            | 5.4416(8) |
| $R_p$        | 3.36      | 3.18                 | 3.03      |
| $R_{wp}$     | 4.18      | 3.88                 | 3.68      |
| $R_e$        | 2.53      | 2.44                 | 2.49      |
| $\chi^2$     | 2.73      | 2.53                 | 2.19      |

**Table S1.** Structural parameters and standard Rietveld agreement factors fornanostructured 1wt%Pd/GDC spheres.

\*Air corresponds to synthetic air (21%  $O_2/N_2$ ).

**Table S2.** Structural parameters and standard Rietveld agreement factors fornanostructured 1wt%Pd/PrDC spheres.

| Atmosphere   | Air*      | 5% H <sub>2</sub> /He | Air*      |
|--------------|-----------|-----------------------|-----------|
| $T(^{o}C)$   | 25        | 500                   | 500       |
| <i>a</i> (Å) | 5.4197(6) | 5.4667(6)             | 5.4457(5) |
| $R_p$        | 2.77      | 3.27                  | 3.32      |
| $R_{wp}$     | 3.59      | 4.09                  | 4.13      |
| $R_e$        | 2.40      | 2.34                  | 2.40      |
| $\chi^2$     | 2.22      | 3.05                  | 2.95      |

\*Air corresponds to synthetic air (21%  $O_2/N_2$ ).



**Figure S6**. Synchrotron XRD patterns recorded at 500 °C in synthetic air  $(21\% O_2/N_2)$  - empty circles- with the Rietveld-fitted pattern considering PdO as a second phase (red line) and without PdO as a second phase (blue line) for1 wt% Pd/GDC spheres in the region close to (a)PdO (111) and (b) PdO (200).



**Figure S7**. Synchrotron XRD patterns recorded at 500 °Cin synthetic air  $(21\% O_2/N_2)$  - empty circles-with the Rietveld-fitted pattern considering PdO as second phase (red line) and without PdO as a second phase (blue line) for 1 wt% Pd/PrDC spheres in the region close to (a)PdO (111) and (b) PdO (200).

|                 | CH <sub>4</sub> oxidation at 300°C                          |               | Fell                      |           |
|-----------------|-------------------------------------------------------------|---------------|---------------------------|-----------|
| Sample          | Reaction rate* $(\text{mmols.g}_{Pd}^{-1}.\text{min}^{-1})$ | $X_{CH4}(\%)$ | $(\text{mmols.min}^{-1})$ | Ref.      |
| 1 wt% Pd/GDC-CC | 7.1                                                         | 5.9           | 0.0625                    | 19        |
| 5 wt% Pd/GDC-CC | 4.3                                                         | 15.4          | 0.0625                    | 19        |
| 1 wt% Pd/GDC    | 29                                                          | 23.2          | 0.0937                    | This work |
| 1 wt% Pd/PrDC   | 28.4                                                        | 22.7          | 0.0937                    | This work |

Table S3. Catalytic performance over the catalysts for  $CH_4$  oxidation reported in the literature.

(\*) The reaction rates were calculated using the methane signal and the following equation (1):

$$rate = \frac{F_{CH_4} * X_{CH_4}}{100 * W_{Pd}}$$
(1)

 $F_{CH_4}$  is the molar flow of methane in mmols.min<sup>-1</sup>  $W_{Pd}$  is the mass of Pd in grams

 $X_{CH_4}$  is the CH<sub>4</sub> conversion in percent.



**Figure S8**. Methane oxidation rates at 300 °C of the studied Pd catalysts in comparison with previous values reported in the literature for 1% wt and 5% wt Pd/GDC-CC. [19]

**References** (same numeration of main text) [19] F.F. Muñoz, R.T. Baker, A.G. Leyva, R.O. Fuentes, Appl. Catal. B: Environmental, 2013, 136-137, 122-132.



**Figure S9**. Catalytic activities for  $CO_2$  formation of 1 wt% Pd/GDC after 4 cycles at 500 °C for 2 h in the reaction mixture (2.1 mL.min<sup>-1</sup> of CH<sub>4</sub>, 11.6 mL.min<sup>-1</sup> of O<sub>2</sub> and 61.3 mL.min<sup>-1</sup> of Ar).

**Table S4.** Temperature at which 10, 50 and 90% of  $CO_2$  formation was reached ( $T_{10}$ ,  $T_{50}$  and  $T_{90}$ , respectively), estimated from the experimental curves (**Figure S8**).

| Cycle           | $T_{10}$ (°C) | <i>T</i> <sub>50</sub> (°C) | <i>T</i> <sub>90</sub> (°C) |
|-----------------|---------------|-----------------------------|-----------------------------|
| $1^{st}$        | 282           | 310                         | 324                         |
| $2^{nd}$        | 292           | 332                         | 418                         |
| 3 <sup>rd</sup> | 301           | 344                         | 436                         |
| $4^{th}$        | 310           | 355                         | 446                         |



**Figure S10**. Catalytic activities for CO<sub>2</sub> formation of 1 wt% Pd/PrDC after 4 cycles at 500 °C for 2 h in the reaction mixture (2.1 mL.min<sup>-1</sup> of CH<sub>4</sub>, 11.6 mL.min<sup>-1</sup> of O<sub>2</sub> and 61.3 mL.min<sup>-1</sup> of Ar).

**Table S5.** Temperature at which 10, 50 and 90% of  $CO_2$  formation was reached ( $T_{10}$ ,  $T_{50}$  and  $T_{90}$ , respectively), estimated from the experimental curves (**Figure S9**).

| Cycle           | $T_{10} (^{\circ} C)$ | $T_{50}$ (°C) | <i>T</i> <sub>90</sub> (°C) |
|-----------------|-----------------------|---------------|-----------------------------|
| $1^{st}$        | 282                   | 310           | 336                         |
| $2^{nd}$        | 303                   | 337           | 401                         |
| 3 <sup>rd</sup> | 315                   | 353           | 427                         |
| $4^{th}$        | 320                   | 367           | 437                         |