Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Figure S1 Rietveld refinements of (a) pure P2 -type and (b) T-type material.

Figure S2 TEM image of (a) P2 -type and (b) T-type material.

Figure S3. XPS analysis of the P2+T material: (a) XPS spectrum of Na 1s; (b)Co

2p; (c) Mn 2p; and (d) O 1s.

Figure S4.(a-b) Cyclic voltammogram of the P2- and T-phase electrode at a scan rate of 0.1 mVs⁻¹; (c-d) Typical charge/discharge voltage profiles of the P2- and T-phase electrode at a current rate of 0.04 C; (e-f) Rate performance of P2- and T-phase, electrode at various current rates.

Figure S5. Specific discharge capacities and coulomb efficiencies versus cycle number for 50 cycles. Potential range: 2–4.4V.

In a narrow voltage of 2-4.4V, the P2+T phase material exhibits specific discharge capacities of 133.5 mAh g⁻¹ and 126.9 mAh g⁻¹ at the 1st and 50th cycle, resulting in 95% capacity retention (2nd–50th cycles). This performance is better than the other two materials. The P2 phase material shows a specific discharge capacity of 99.3 mAh g⁻¹ after 50th cycles, with a cycle efficiency of 83.1%.

Figure S6 Rietveld refinements of P2+T-type Na_xCo_{0.1}Mn_{0.9}O₂ with varied P2: T

ratio of 50%:50% (a), and 20%:80% (b).

Figure S7 The C-rate performance of $Na_xCo_{0.1}Mn_{0.9}O_2$ with the radio between P2 and T of 50%:50% (a), and 20%:80% (b); (c) Charge/discharge curves of $Na_xCo_{0.1}Mn_{0.9}O_2$ with vried P2:T ratio.

Phase	P2 (JCPDS: 27-0	751)
Space Group	P63/mmc	
	a (Å)	2.8275
	b (Å)	2.8275
	c (Å)	11.0295(9
)
	Volume (Å ³)	76.3651
Cell parameters	α (°)	90
	β (°)	90
	γ (°)	120
Agreement factors	Rwp (%)	6.88
	Rp (%)	8.56

Table S1 Lattice parameters of the P2 compound sample after Rietveld refinement.

Phase	T (JCPDS: 27-0751)		
Space Group	Pbam		
	a (Å)	9.1133(9)	
	b (Å)	21.3177(3)	
	c (Å)	2.8897(9)	
	Volume (Å ³)	693.0517	
Cell parameters	α (°)	90	
	β (°)	90	
	γ (°)	90	
Agreement factors	Rwp (%)	5.97	
	Rp (%)	9.8	

Table S2 Lattice parameters of the T compound sample after Rietveld refinement.

Phase	P2 (JCPDS: 27-0751)		T (JCPDS: 27-0750)	
Phase ratio	32.39%		63.61%	
space group	P63/mmc		Pbam	
	a (Å)	2.8791(1)	a (Å)	9.1125(1)
	b (Å)	2.8791(1)	b (Å)	26.4026(8)
	c (Å)	11.3380(5)	c (Å)	2.8235(1)
	Volume (Å ³)	81.396(4)	Volume (Å ³)	679.4678(5)
Cell	α (°)	90	α (°)	90
parameters				
	β (°)	90	β (°)	90
	γ (°)	120	γ (°)	90
Agreement	Rwp(%)	5.49	Rwp(%)	5.49
factors				
	Rp(%)	7.69	Rp(%)	7.69

Table S3 Lattice parameters of the P2+T compound sample after Rietveld refinement.

Theoretical chemical formula	Measured atomic ratio		
	Na	Mn	Со
$Na_xMn_{0.9}Co_{0.1}O_2$	0.48	0.89	0.09

 Table S4 ICP-AES results of the P2+T compound sample

Cathode materials	Rate capability	Cycling stability	First discharge	Ref.
			capacity	
P2-Type	80 mAh g^{-1}	~ 120 mAh g ⁻¹ after	180 mAh g ⁻¹ (12	21
$Na_{0.78}Ni_{0.23}Mn_{0.69}O_2$	(605 mA g ⁻¹)	20 cycles	mA g ⁻¹)	
		(12 mA g-1)		
Na _{0.67} Mn _{0.67} Ni _{0.33} O ₂	$35 \text{ mAh } \text{g}^{-1}$	~ 120 mAh g ⁻¹	150 mAh g ⁻¹ (17	23
	(340 mA g ⁻¹)	after100 cycles (17	mA g ⁻¹)	
		mA g ⁻¹)		
P2-type	58 mAh g^{-1}	~ 150 mAh g ⁻¹ after 190 mAh g ⁻¹ (13)		25
$Na_{x}Fe_{1/2}Mn_{1/2}O_{2}$	(1040 mA g ⁻¹)	30 cycles	mA g ⁻¹)	
		(13 mA g ⁻¹)		
P2/O3 composite	69 mAh g ⁻¹	~ 125 mAh g ⁻¹	200 mAh g ⁻¹ (10	26
$Na_{0.66}Li_{0.18}Mn_{0.71}Ni_{0.2}$	(500 mA g ⁻¹)	after150 cycles	mA g ⁻¹)	
$_{1}Co_{0.08}O_{2^{+}}$		(50 mA g ⁻¹)		
P2/O3 Na ₁₋	78 mAh g ⁻¹	~ 134 mAh g ⁻¹	140 mAh g ⁻¹ (15	27
$_{x}Li_{x}Ni_{0.5}Mn_{0.5}O_{2^{+}d}$	(150 mA g ⁻¹)	after20 cycles	mA g ⁻¹)	
		(15 mA g ⁻¹)		
P2/O3	110 mAh g ⁻¹	~ 130 mAh g ⁻	154 mAh g ⁻¹ (18	30
$Na_{x}Mn_{y}Ni_{z}Fe_{0.1}Mg_{0.1}$	(900mA g ⁻¹)	¹ after50 cycles mA g^{-1})		
O ₂		(180mAg ⁻¹)		
P2-Na _x Co _y Mn _{1-y} O ₂ (y	120 mAh g ⁻¹	~ 117 mAh g ⁻¹	188 mAh g ⁻¹⁽ 20	39
= 0, 0.1)	(400mA g ⁻¹)	after150 cycles	mA g ⁻¹)	
		(50 mA g ⁻¹)		
P2+T	117 mAh g ⁻¹	~ 145 mAh g ⁻¹	219 mAh g ⁻¹⁽ 18	This
$Na_{x}Mn_{0.9}Co_{0.1}O_{2}$	(900mA g ⁻¹)	after 50 cycles mA g ⁻¹)		work
		(180mAg ⁻¹)		

 $\label{eq:solution} \begin{array}{l} \textbf{Table S5} \ \text{Electrochemical performance comparison between the previously reported} \\ Na_x Mn_y M_{1-y} O_2 \ \text{cathodes and } P2+T-type \ Na_x Co_{0.1} Mn_{0.9} O_2 \ \text{composite cathode} \end{array}$

		P2	Т	P2+T
Ave D for CV D(>	Average slope	0.00568	0.01436	0.01671
	$\mathbf{D}(\times 10^{-12} cm^2/s)$	2.156	76.55	434.24
D for EIS $D(\times 10^{-12}c)$	Slope	13.07	32.83	8.23
	$\mathbf{D}(\times 10^{-12} cm^2/s)$	1.827	41.67	127.07

Table S6 Na⁺ Diffusion Coefficient(D) of P2, T and P2+T materials Calculated from the CV and EIS.