Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting information

Sulfur Film Sandwiched between Few-Layered MoS₂ Electrocatalysts and Conductive Reduced Graphene Oxide as Robust Cathode for Advanced Lithium-Sulfur Battery

Yanju Wei,^a Zhenkai Kong,^a Yankai Pan,^a Yueqiang Cao,^a Donghui Long,^{a,b,*} Jitong Wang,^{a,b} Wenming Qiao,^{a,b} Licheng Ling ^{a,b,*}

^a State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.

^b Key Laboratory of Specially Functional Polymeric Materials and Related Technology, East China University of Science and Technology, Shanghai 200237, China.

*Corresponding author: <u>longdh@mail.ecust.edu.cn</u>; <u>lchling@ecust.edu.cn</u>

Figure S1. (a) SEM, (b) TEM and the corresponding (c-f) elemental mapping images of the S/rGO intermediate at an initial hydrothermal time of 2 h.

Figure S2. TGA curve under air for the S/rGO intermediate at an initial hydrothermal time of 2 h.

Figure S3. HR-TEM image of the $MoS_2/S/rGO$ -HT composite, obtained by heat-treating $MoS_2/S/rGO$ at 800 °C for 2 h in argon environment.

Figure S4. XRD pattern of the MoS₂/S/rGO-HT composite.

Figure S5. (a) TEM and the corresponding (b-d) elemental mapping images of the S/rGO composite.

Figure S6. Cycling performance of the MoS₂/S/rGO and S/rGO cathodes at 0.5 C.

Figure S7. (a) CV curves and (b) cycling performance of the MoS₂/rGO composite at 0.2 C.

Figure S8. Nyquist plots of the MoS₂/S/rGO and S/rGO cathodes before cycling.

Figure S9. Initial-cycle voltage profiles of the $MoS_2/S/rGO$ electrodes with sulfur loadings of 1.0 and 3.6 mg cm⁻² at 0.2 C.

Figure S10. (a) Rate capability and (b) cycling performance at 0.2 C of the thick MoS_2/rGO electrodes with sulfur loading of 3.6 mg cm⁻².

Cathode	Sulfur	Sulfur	C-rate	Cycle number	Initial	Reversible	Capacity
	content	loading			capacity	capacity	decay rate
	(wt%)	(mg cm ⁻²)			(mAh g ⁻¹)	$(mAh g^{-1})$	per cycle
This work	70	0.9-1.0	0.2 C	150	1305	954	0.18%
			0.5 C	300	1183	908	0.077%
			2 C	1000	985	619	0.037%
		3.6	0.2	110	613	714	-
$MoS_{2-x}/rGO/S^1$	75	0.9	0.5 C	600	1251	628	0.083%
NbS2@S@IG2	72	1.05	0.5 C	350	1185	856	0.08%
			40 C	2000	218	74	0.033%
		3.25	1 C	600	506	405	0.033%
WS_2 - $Li_2S_8^3$	-	1.2	0.2 C	100	ca. 950	652	0.31%
			0.5 C	360	655	596	0.025%
S/CoS ₂ +G ⁴	75	0.4	0.5 C	150	1368	1005	0.18%
			2 C	2000	1003	321	0.034%
$Pt/G-Li_2S_8^5$	-	1.2	0.2 C	100	ca. 980	780	0.20%
			1 C	300	ca. 464	ca. 340	0.09%
S@Co-N-GC ⁶	70	1.0-1.2	0.2 C	200	1440	850	0.20%
			1 C	500	1150	625	0.09 %
Fe ₂ O ₃ -PGM-S ⁷	60	1	2 C	500	705	388	0.09%
MoO ₂ /G-S ⁸	79	-	0.2 C	100	1124	905	0.19%
			1 C	500	806	664	0.035%

Table S1. Comparison on the cycling performance of present work with the previously reported sulfur

 cathodes using metals, metal oxides or sulfides as electrocatalysts for Li-S batteries.

C-41-	Sulfur content	Sulfur loading	C 4	Reversible capacity	
Cathode	(wt%)	(mg cm ⁻²)	C-rate	(mAh g ⁻¹)	
This work			5 C	733	
		0.9-1.0	7 C	657	
	70		10 C	553	
	70		0.05	923	
		3.6	0.1	787	
			0.2	710	
MoS _{2-x} /rGO/S ¹	75	0.0	5 C	ca. 900	
	15	0.9	8 C	827	
NbS2@S@IG2		1.05	5 C	ca. 600	
		1.05	10 C	ca. 460	
	72		0.05	1182	
		3.25	0.1	895	
			0.2	811	
WS_2 - $Li_2S_8^3$	-	1.2	-	-	
S/CoS_2+G^4	75	0.4	-	-	
Pt/G-Li ₂ S ₈ ⁵	-	1.2	-	-	
S@Co-N-GC ⁶	70	1.0-1.2	5 C	565	
Fe ₂ O ₃ -PGM-S ⁷	60	1	5 C	565	
MoO ₂ /G-S ⁸	79	-	2 C	615	

Table S2. Comparison on the rate capability of present work with the previously reported sulfur cathodes using metals, metal oxides or sulfides as electrocatalysts for Li-S batteries.

Supporting References

- H. B. Lin, L. Q. Yang, X. Jiang, G. C. Li, T. R. Zhang, Q. F. Yao, G. Y. W. Zheng and J. Y. Lee, *Energy Environ. Sci.*, 2017, 10, 1476-1486.
- 2. Z. B. Xiao, Z. Yang, L. J. Zhang, H. Pan and R. H. Wang, ACS Nano, 2017, 11, 8488-8498.
- 3. G. Babu, N. Masurkar, H. Al Salem and L. M. R. Arava, J. Am. Chem. Soc., 2016, 139, 171-178.
- Z. Yuan, H. J. Peng, T. Z. Hou, J. Q. Huang, C. M. Chen, D. W. Wang, X. B. Cheng, F. Wei and Q. Zhang, *Nano Lett.*, 2016, 16, 519-527.
- H. Al Salem, G. Babu, C. V. Rao and L. M. R. Arava, J. Am. Chem. Soc., 2015, 137, 11542-11545.
- 6. Y. J. Li, J. M. Fan, M. S. Zheng and Q. F. Dong, Energy Environ. Sci., 2016, 9, 1998-2004.
- C. Zheng, S. Z. Niu, W. Lv, G. M. Zhou, J. Li, S. X. Fan, Y. Q. Deng, Z. Z. Pan, B. H. Li and F. Y. Kang, *Nano Energy*, 2017, **33**, 306-312.
- X. Wu, Y. Du, P. X. Wang, L. S. Fan, J. H. Cheng, M. X. Wang, Y. Qiu, B. Guan, H. X. Wu, N. Q. Zhang and K. N. Sun, *J. Mater. Chem. A*, 2017, **5**, 25187-25192.