Supporting Information

Investigation of the exceptional charge performances of $Li_{4-x}Mn_2O_5$ as Li-ion Battery electrode material

M. Freire^{a,e}, M. Diaz-Lopez^{b,c}, P. Bordet^{b,c}, C. V. Colin^{b,c}, O.I. Lebedev^a, N.V. Kosova^d, C. Jordy^e, D. Chateigner^a, A.L.Chuvilin^f, A. Maignan^a, and V. Pralong^{a*}

^a Laboratoire de Cristallographie et Sciences des Matériaux CRISMAT, ENSICAEN, Normandie Université, CNRS, 6 Bd Maréchal Juin, F-14050 Caen, France. ; ^bUniversité Grenoble Alpes, Institut Néel, F-38000 Grenoble, France; ^d Institute of Solid State Chemistry and Mechanochemistry SB RAS, 18 Kutateladze, Novosibirsk 630128, Russia. ; ^e Saft, Direction de la Recherche, 111/113 Bd Alfred Daney, 33074 Bordeaux, France, ^f CIC nanoGUNE, 20018 Donostia-San Sebastian, Spain.

Figure SI-1. X-ray diffraction data for electrochemically charged (red) and chemically oxidized (violet) $Li_{4-x}Mn_2O_5$.

Figure SI-2. Acquired NPD patterns. The 2θ region of the Rietveld refinements was reduced to the range given in Figure 5 of the main text where peaks are observed.

Figure SI-3. Typical voltage-composition profile of Li₄Mn₂O₅ obtained at C/80, in coin cell.

Figure SI-4. Le Bail profile fitting of the X-ray diffraction pattern of $Li_{3.6}Mn_{2.4}O_{5.4}$ (a = 4.17 Å) without any trace of Li_2O . The data was a collected with a Bruker D8 Advance diffractometer equipped with a Mo source $K_{\alpha,1} = 0.7093$ Å.

Figure SI-5. PDF simulation of a main Li4 phase with an MnO structure with (blue) and without (black) 7 wt% of Li_2O .

Figure SI-6. PDF data showing a coherent size domain of around 6 nm.

Figure SI-6. First PDF peaks for Li4 (green) and Li0.