Supplementary Information

A novel ball milling technique for room temperature processing of TiO₂ nanoparticles employed as electron transport layer in perovskite solar cells and modules

Mriganka Singh,^a Chien-Hung Chiang,^b Karunakara Moorthy Boopathi,^c Chintam Hanmandlu^c, Gang Li,^e Chun-Guey Wu,^{*bf} Hong-Cheu Lin,^{*a} and Chih-Wei Chu^{*cdg}

^{*a*} Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan. Email: linhc@cc.nctu.edu.tw

^b Research Center for New Generation Photovoltaics, National Central University, Jhong-Li, Taiwan. Email: t610002@cc.ncu.edu.tw

^c Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan.

Email: gchu@gate.sinica.edu.tw

^d College of Engineering, Chang Gung University, Guishan District, Taoyuan City, Taiwan

^e Department of Electronic and Information Engineering, The Hong Kong Polytechnic

University, Hung Hom, Kowloon, Hong Kong, China

^f Department of Chemistry, National Central University, Jhong-Li, Taiwan

^g Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan

Table S1: PV performance of PSCs on different types of TiO₂ ETLs at the reverse and forward scans, measured under AM 1.5G illumination (100 mW/cm²).

Device Structure	Scan	V_{oc}	J_{sc}	FF	PCE
	direction	(V)	$(mA cm^{-2})$	(-)	(%)
S-TiO ₂	Reverse	1.02	20.00	0.60	12.32
	Forward	0.91	19.85	0.56	10.20
S-TiO ₂ /m-TiO2	Reverse	1.10	21.48	0.77	18.21
	Forward	1.01	21.49	0.63	13.92
G-TiO ₂	Reverse	1.07	21.72	0.75	17.43
	Forward	1.05	21.63	0.75	17.03

Table S2: The device performance of PSCs (small-area: $\leq 0.1 \text{ cm}^2$) based on low-temperature TiO₂ ETL prepared with various deposition methods.

No.	Device	ETL	ETL	V_{oc}	J_{sc}	FF	PCE	Year/
	Structure	deposition	processing	(V)	(mA	(-)	(%)	Ref.
	(only ETL)	method	temperature		cm-			
			(°C)		²)			
1	FTO/TiO ₂	hydrothermal	150	1.00	17.7	0.61	10.0	2013/
	FTO/TiO ₂			1.04	21.9	0.73	15.6	[1]
	+ graphene							
2	ITO/ TiO ₂	non-hydrolytic	150	1.06	19.9	0.65	13.8	2014/
	ITO/PEIE/	sol-gel		1.13	22.7	0.75	19.3	[2]
	Y:TiO ₂							
3	FTO/TiO _x	non-hydrolytic	150	0.96	15.4	0.56	8.3	2014/
	FTO/lt-TiO ₂	sol-gel		1.05	20.0	0.72	15.3	[3]
4	ITO/TiO ₂	non-hydrolytic	150	1.02	21.0	0.72	15.6	2016/
	ITO/TiCl-	sol-gel		1.09	19.7	0.75	16.4	[4]
	TiO ₂							
5	ITO/TiO ₂	non-hydrolytic	150	1.03	19.1	0.77	15.1	2017/
	ITO/CQDs	sol-gel		1.13	21.3	0.78	18.8	[5]
	/TiO ₂	-						
6	ITO/TiO ₂	non-hydrolytic	150	1.12	21.6	0.76	18.5	2017/
	ITO/TiO ₂ -Cl	sol-gel		1.18	22.3	0.80	21.4	[6]
7	ITO/G-TiO ₂	ball milling	<150	1.07	21.7	0.75	17.4	This
		-						work]
								-

No.	Device	ETL	Aperture	Active	Designated	PCE (%)	Ref.
	Structure	processing	area	area	area (cm ²)		
	(only ETL)	temperature	(cm^2)	(cm^2)			
		(°C)					
1	C-TiO ₂	130	4.00	_	_	13.6	[8]
2	$C-TiO_2/M-TiO_2$	450	_	49.0	_	10.4	[9]
3	C-TiO ₂	450	_	11.09	_	13.3	[10]
4	C-TiO ₂ /M-TiO ₂	500	_	31.0	_	10.46	[11]
			_	70.0	_	10.74	
5	C-	450	_	50.6	_	12.6	[12]
	$TiO_2/Graphene$ + M- TiO ₂						
6	$C-TiO_2/M-TiO_2$	500	_	8.40	_	6.22	[13]
7	C-TiO ₂ /M-TiO ₂	480	_	8.80	_	9.50	[14]
8	C-TiO ₂ /TiO ₂	450	_	8.80	_	8.07	[15]
	NRs						
9	C-TiO ₂ /M-TiO ₂	500	36.1	_	_	15.8	[16]
			17.6	_	_	13.9	
			36.1	_	_	12.1(certified)	
10	C-TiO ₂ /M-TiO ₂	480	_	10.1	_	10.3	[17]
			_	100	_	4.30	
11	C-TiO ₂	450	10.36	_	_	15.14	[18]
12	C-TiO ₂	500	_	2.02		13.53	[19]
13	G-TiO ₂	<150	_	43.2	25.2	14.19	This
							work

Table S3: The efficiency of the perovskite solar submodules with various area based on TiO₂ ETL prepared at various temperature.⁷

Note. C-TiO₂: Compact TiO₂ layer; M-TiO₂: Mesoporous TiO₂ layer; G-TiO₂: Ground TiO₂ layer

Fig. S1: Average particle size of TiO₂ powder plotted with respect to the grinding time (insert: the pictures of the ground TiO₂ solutions obtained different grinding times).

Fig. S2: Atomic force microscopy image of G-TiO₂ film spin-coated on ITO.

Fig. S3: *J-V* curve of PSCs with the device structure FTO/S-TiO₂/m-TiO₂/CH₃NH₃PbI₃/spiro-MeOTAD/MoO₃/Ag measured at reverse and forward scans.

Fig. S4: J-V curves of PSCs with the G-TiO₂ and S-TiO₂ as an electron transporting layers

measured at reverse and forward scans.

Fig. S5: *J-V* curves of of the G-TiO₂ based PSCs measured with different delay times.

Fig. S6: Photograph of large-area (25.2 cm²) solar submodules incorporating G-TiO₂ as the ETL.

Fig. S7: Long-term stability tests of the best cell [ITO (or FTO)/G-TiO₂ (or S-TiO₂) /CH₃NH₃PbI₃/spiro-MeOTAD/MoO₃/Ag] stored in a glove box under N₂.

Fig. S8: Histograms of the performance (current-density, open-circuit voltage, power conversion efficiency, and fill factor) of 51 G-TiO₂ and S-TiO₂ devices, measured under 1 Sun light illumination (100 mW cm⁻²).

Fig. S9: Tauc plots of G-TiO₂ (dark cyan) and S-TiO₂ (burgundy).

Fig. S10: AFM images of (a) glass/FTO/S-TiO₂, (b) glass/FTO/S-TiO₂/CH₃NH₃PbI₃, (c) glass/ITO/G-TiO₂ and (d) glass/ITO/G-TiO₂/CH₃NH₃PbI₃.

Fig. S11: *J-V* curves of PSCs based on G-TiO₂ ETL with various thicknesses prepared from different concentrations of G-TiO₂ suspension.

Reference

- J. T.-W. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert and H. J. Snaith, *Nano Lett.*, 2013, **14**, 724-730.
- H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu and Y. Yang, *Science*, 2014, 345, 542-546.
- K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate and H. J. Snaith, *Energy Environ. Sci.*, 2014, 7, 1142-1147.
- Z. Liu, Q. Chen, Z. Hong, H. Zhou, X. Xu, N. De Marco, P. Sun, Z. Zhao, Y.-B. Cheng and
 Y. Yang, ACS Appl. Mater. Interfaces, 2016, 8, 11076-11083.
- H. Li, W. Shi, W. Huang, E.-P. Yao, J. Han, Z. Chen, S. Liu, Y. Shen, M. Wang and Y. Yang, *Nano Lett.*, 2017, 17, 2328-2335.
- H. Tan, A. Jain, O. Voznyy, X. Lan, F. P. G. de Arquer, J. Z. Fan, R. Quintero-Bermudez,
 M. Yuan, B. Zhang and Y. Zhao, *Science*, 2017, 355, 722-726.
- 7 Z. Yang, S. Zhang, L. Li and W. Chen, J. Materiomics, 2017.
- W. Qiu, T. Merckx, M. Jaysankar, C. M. de la Huerta, L. Rakocevic, W. Zhang, U. Paetzold,
 R. Gehlhaar, L. Froyen and J. Poortmans, *Energy Environ. Sci.*, 2016, 9, 484-489.
- 9 Y. Hu, S. Si, A. Mei, Y. Rong, H. Liu, X. Li and H. Han, *Solar RRL*, 2017, 1.
- 10 M. Yang, Z. Li, M. O. Reese, O. G. Reid, D. H. Kim, S. Siol, T. R. Klein, Y. Yan, J. J. Berry and M. F. van Hest, *Nat. Energy*, 2017, 2, nenergy201738.
- 11 A. Priyadarshi, L. J. Haur, P. Murray, D. Fu, S. Kulkarni, G. Xing, T. C. Sum, N. Mathews and S. G. Mhaisalkar, *Energy Environ. Sci.*, 2016, **9**, 3687-3692.
- A. Agresti, S. Pescetelli, A. L. Palma, A. E. Del Rio Castillo, D. Konios, G. Kakavelakis, S.
 Razza, L. Cinà, E. Kymakis and F. Bonaccorso, *ACS Energy Lett.*, 2017, 2, 279-287.

- 13 P. S. Shen, J. S. Chen, Y. H. Chiang, M. H. Li, T. F. Guo and P. Chen, *Adv. Mater. Interfaces*, 2016, **3**.
- 14 M. R. Leyden, Y. Jiang and Y. Qi, J. Mater. Chem. A, 2016, 4, 13125-13132.
- A. Fakharuddin, A. L. Palma, F. Di Giacomo, S. Casaluci, F. Matteocci, Q. Wali, M. Rauf,
 A. Di Carlo, T. M. Brown and R. Jose, *Nanotechnology*, 2015, 26, 494002.
- H. Chen, F. Ye, W. Tang, J. He, M. Yin, Y. Wang, F. Xie, E. Bi, X. Yang and M. Grätzel, *Nature*, 2017, **550**, 92-95.
- S. Razza, F. Di Giacomo, F. Matteocci, L. Cina, A. L. Palma, S. Casaluci, P. Cameron, A.
 D'epifanio, S. Licoccia and A. Reale, *J. Power Sources*, 2015, 277, 286-291.
- 18 M. Yang, D. H. Kim, T. Klein, Z. Li, M. O. Reese, B. Tremolet de Villers, J. Berry, M. F. van Hest and K. Zhu, ACS Energy Lett., 2018.
- 19 P. Li, C. Liang, B. Bao, Y. Li, X. Hu, Y. Wang, Y. Zhang, F. Li, G. Shao and Y. Song, *Nano Energy*, 2018, 46, 203-211.