Supporting Information

Synergistic effect of anions and cations in additive

for highly efficient and stable perovskite solar cells

Haijuan Zhang^a, Meihui Hou^a, Yingdong Xia^{a,*}, Qilin Wei^a, Ze Wang^a, Yingchun, Cheng^a, Yonghua Chen^{a,*}, Wei Huang^{a,b,c}

^aKey Laboratory of Flexible Electronics (KLOFE) & Institution of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, Jiangsu, China ^bShaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), Xi'an 710072, Shaanxi, China

^cKey Laboratory for Organic Electronics & Information Displays (KLOEID), and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, China

*Email: iamydxia@njtech.edu.cn

iamyhchen@njtech.edu.cn

Figure S1. The top-view SEM images of perovskite films. a) Pure perovskite film, b) Perovskite films with 2%, 5%, 10%, and 15% Pb(SCN)₂, c) Perovskite films with 2%, 5%, 10%, and 15% NH₄I, d) Perovskite films with 5%, 10%, 15%, and 17% NH₄SCN.

Figure S2. XRD patterns of the perovskite films with 0%, 5%, 10%, 13%, 15%, and 17% NH4SCN.

films with different additives.

Figure S4. The statistical diagram of PCEs of the devices prepared by adding different amounts of NH₄SCN additive in the precursor solution.

Figure S5. The current density–voltage (J–V) curves of the devices with 0%, 2%, 5%, 10% and 15% NH₄I additive.

Figure S6. The current density–voltage (J–V) curves of the devices with 0%, 2%, 5%, 10%, 15% Pb(SCN)₂ additive.

Figure S7. The current density-voltage curves of the hole-only devices with the structure of ITO/PEDOT:PSS/perovskite/Poly-TPD/Al and electron-only devices with the structure of ITO/SnO₂/perovskite/PCBM/Al.

Figure S8. Hysteresis effect of devices with the device structure of ITO/SnO₂ (20 nm)/perovskites with or without NH₄SCN additive/ Spiro-OMeTAD (100 nm)/MoO₃ (5 nm)/Ag (120 nm).

Figure S9. XRD patterns evaluation of the perovskite films with a) 0% additive, b) 5% Pb(SCN)₂, c) 5% NH₄I, d) 15% NH₄SCN.

Figure S10. The elemental distribution in the perovskite films without additive analyzed by Energy Dispersive Spectrometer (EDS).

Figure S11. The elemental distribution in the perovskite films with 15% NH₄SCN additive analyzed by EDS.

Figure S12. FTIR spectra of perovskite powders with and without NH₄SCN additive.

Figure S13. The XRD patterns of NH₄SCN based perovskite films before and after annealing, the pristine NH₄PbI_{3-x}SCN_x perovskite, and MAPbI₃ without additives.

Compounds	Energy (eV)
NH4I	-1140.6337047659
CH3NH3I	-1335.5293553123
PbI ₂	-3603.1894938924
MAPbI ₃	-4939.9162464459
NH4PbI3	-4745.1273744954

Table S1. The calculation of the formation enthalpy (\triangle Hf) of the following reactions: NH₄I + PbI₂ \rightarrow NH4PbI₃ and MAI + PbI₂ \rightarrow MAPbI₃.

 $\Delta H_f(MAPbI_3) = -1.197397241 (eV)$ $\Delta H_f(NH_4PbI_3) = -1.304175837 (eV)$

Ab-initio calculations are performed using density functional theory in the generalized gradient approximation (GGA) with Perdew-Burke-Ernzerhof parametrization for the exchange-correlation functional [1], as implemented in the Quantum-ESPRESSO package [2]. We employ ultrasoft pseudopotentials and a 408 eV plane wave energy cutoff. The atomic coordinates are fully relaxed until all atomic forces have declined below 0.01 eV/Å. The Brillouin zone is sampled on a $4 \times 4 \times 4$ k-point grid.

[1] B. Hammer, L. B. Hansen, and J. K. Nørskov, Phys. Rev. B 1999, 59, 7413.

[2] Giannozzi, P., et al., QuantumESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials. J. Phys. Condens. Matter, 2009, 21, 395502.