Supporting Information

3D printing of Fe-based Bulk Metallic Glass and Composite Components with Large Dimensions and Enhanced Toughness by Thermal Spraying

Cheng Zhang^{1, a}, Wei Wang^{1, a}, Yi-Cheng Li^a, Yan-Ge Yang^b, Yue Wu^c and Lin Liu^{a,*}

^aThe State Key Lab for Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, #1037, Luo Yu road, 430074Wuhan, China.
^b Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, No. 62 Wen cui Road, 110016 Shenyang, China.
^cDepartment of Physics and Astronomy, University of North Carolina, Chapel Hill,

NC 27599-3255, USA.

*Corresponding author. E-mail: <u>lliu2000@mail.hust.edu.cn</u> ¹ Cheng Zhang and Wei Wang contributed equally to this work.

Microstructure characterization of the TS3DP-BMG, TS3DP-BMGC and as-cast BMG

Figure S1. XRD patterns of the TS3DP-BMG and TS3DP-BMGC (with 50wt% 316L SS), as compared to the original amorphous powder and as-cast $Fe_{48}C_{15}B_6Mo_{14}Cr_{15}Y_2$ BMG rods with a diameter of 6 mm and 10 mm.

Figure S2. Differential thermal analysis (DTA) plots of the TS3DP-BMG and TS3DP-BMGC samples as compared to the original powders. Taking the crystallization enthalpy of the original powder as the base, the fraction of amorphous phase in the TS3DP-BMG and TS3DP-BMGC samples can be calculated according to the change in the enthalpy, e.g., χ(amorphous fraction)=ΔH _{TS3DP-sample}/ΔH _{powder}, which yields approximately 95% and 43% amorphous phase in the TS3DP-BMG and TS3DP-BMGC.

Figure S3. Differential thermal analysis (DTA) plots taken from different regions (top, middle and bottom) of a 3-mm-rod TS3DP-BMG sample. Inset shows the three DTA curves are similar with the same crystalline temperature and exothermic reaction, confirming that each deposited layer have a similar amorphous structure. The bottom region means \sim 1 mm perpendicularly away from the substrate; while the bottom region is \sim 1 mm perpendicularly away from the surface.

Alternating hard/soft structure in the TS3DP-BMGC sample by microhardness measurement

Figure S4. Microhardness distribution in the TS3DP-BMGC sample showing the alternating hard and soft structure.

The microhardness was measured using a micro-indenter with the load of 50 g and a dwell time of 15 s. To obtain the microhardness distribution in the TS3DP-BMGC specimen, we took the hardness measurements along the deposition direction across a 2000- μ m distance with a constant interval of 20 μ m between each indentation. The result shown in Fig. S4 clearly demonstrate the

structure with alternating soft and hard regions in the TS3DP-BMGC specimen, which could be effective in hindering the crack prorogation.

Fracture toughness assessment based upon surface roughness analysis

The fraceture toughness was assessed according to the method proposed by Kotoul *et al.* [1]. Basically, a simple pyramidal model of the crack front was proposed for approximate analytical estimations, in which the tortuous crack front is characterized by the title angle (\emptyset) and twist angle (θ) towards the macroscopic crack plane, as illustrated in **Figure S5**.

Figure S5. Scheme of the pyramidal model approximating the tortuous crack front.

The two angles are associated with the profile roughness (R_L , measured along the crack front), and the profile periodicity λ_{pp} and λ_{pl} measured parallel and perpendicular to the crack front, by the following equations:

$$\lambda_{pp} \tan \Theta = \lambda_{pl} \tan \emptyset$$
(1)
$$R_{L} = \cos^{-1} \emptyset,$$
(2)

The λ_{pp} and λ_{pl} are determined by the Fourier analysis of the roughness profiles measured on the fracture surface. The measured values for the TS3DP-BMG, TS3DP-20BMGC, TS3DP-50BMGC and as-cast samples are summarized in **Table S1**.

Based on the data obtained, the effective stress intensity factor k_{eff} for the pyramidal model of the crack front was then calculated as:

$$k_1 = \cos(\theta/2) [2v \sin^2 \theta + \cos^2(\theta/2) \cos^2 \theta]$$
(3)

$$k_2 = \sin(\theta/2) \cos^2(\theta/2) \tag{4}$$

 $k_3 = \cos(\theta/2) \sin \emptyset \cos \emptyset \left[2\nu \cdot \cos^2(\theta/2) \right]$ (5)

$$k_{eff}^{2} = \frac{\pi - 2}{2\Theta(2R_{L} + \pi - 4)} \int_{-\Theta}^{\Theta} \left(k_{1}^{2} + k_{2}^{2} + \frac{k_{3}^{2}}{1 - \nu}\right) d\Theta$$
(6)

Then, the predict fracture toughness (K_{IC}) was calculated using the following equation:

$$\frac{K_{IC}}{K_{IMC}} = \frac{1}{k_{eff}} \quad (7)$$

where K_{IMC} represents the fracture toughness of undeflection sample, i.e., as-cast BMG in the present study. The calculated ratio between K_{IC} and K_{IMC} are shown in **Table S1**.

Samples	$R_{\rm L}$	λ_{pp} (μm)	$\lambda_{\rm pl}(\mu m)$	Ø	θ_{m}	k _{eff}	$K_{\rm IC}/K_{\rm IMC}$
As-cast BMG	1.04	230	236	0.28	0.29	0.94	1.07
TS3DP-BMG	1.64	270	242	0.91	0.86	0.52	1.92
TS3DP-BMGC	4.42	199	418	1.34	1.46	0.24	4.17

Table S1. Characteristics of the pyramidal model related to the measured samples

Supporting references

 M. Kotoul, J. Pokluda, P. Sandera, I. Dlouhy, Z. Chlup, A.R. Boccaccini, Acta Mater., 2008, 56, 2908.