Supporting Information of

Popgraphene: a new 2D Planar Carbon Allotrope Composed of 5–8–5 Carbon Rings for High-performance Lithium-ion Battery Anodes from Bottom-up Programming

Shuaiwei Wang^a, Baocheng Yang^a, Houyang Chen^{b*}, Eli Ruckenstein^b

^a Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China ^bDepartment of Chemical and Biological Engineering, State University of New York at Buffalo, Buffalo, New York 14260-4200, USA

^{*} To whom correspondence should be addressed. Email: hchen23@buffalo.edu

Figure S1. Band structures and density of states (DOS) of a popgraphene sheet based on the PBE functional and vdW corrections.

Figure S2. Band structures of a popgraphene sheet based on both HSE and PBE functionals without considering vdW corrections.

Figure S3. The band structures of a popgraphene sheet under uniaxial and biaxial loading at the strains of $\pm 5\%$ without vdW corrections. +5% occurs under tensile loading, whereas -5% happens under compression.

Figure S4. Adsorption structures of sixteen Li atoms on a popgraphene sheet after optimization with considering vdW corrections.

Figure S5. The fluctuations of total potential energy for Li_4C_6 during AIMD simulations at 300 K. Insets are top view (left) and side view (right) of snapshots of the equilibrium structure of Li_4C_6 .

Figure S6. The corresponding diffusion energy profiles of Li diffusion on a popgraphene sheet without considering vdW corrections.

