Electronic Supplementary Information (ESI)

Tuning Dimensions and Structures of Nitrogen-doped Carbon Nanomaterials Derived from Sacrificial g-C₃N₄/Metal-Organic Frameworks for Enhanced Electrocatalytic Oxygen Reduction

Ruwen Wang, Tingting Yan, Lupeng Han, Guorong Chen, Hongrui Li,

Jianping Zhang, Liyi Shi and Dengsong Zhang*

Research Center of Nano Science and Technology, School of Material Science and Engineering, Shanghai University, Shanghai, 200444, China. E-mail: dszhang@shu.edu.cn

Figures and Tables

Figure S1: TEM images of g-C₃N₄ and Zn/Co-ZIF@g-C₃N₄.

Figure S2: AFM images of N-CNS.

Figure S3: TEM images of Co/N-BCNTs-800 and Co/N-BCNTs-1000.

Figure S4: TEM images of Zn-Co-ZIF-900, ZIF-8-900 and ZIF-67-900.

Figure S5: TEM images of Zn/Co=X/Y derived Co/N-BCNTs.

Figure S6: XRD patterns of Zn/Co=X/Y derived Co/N-BCNTs.

Figure S7: LSV curves for Zn-Co-ZIF-900, ZIF-8-900 and ZIF-67-900 in an O_2 -

saturated 0.1 M KOH solution at a sweep rate of 10 mV s⁻¹ and electrode rotation speed of 1600 rpm.

Figure S8: LSV curves for N-CNS and Co/N-CNTFs at various rotation rates and corresponding Kouteck–Levich plots derived from the RDE data.

Table S1: Elemental contents of the synthesized catalysts determined by XPS spectra.

Table S2: Percentage of various nitrogen species determined by XPS spectra.

Table S3: Comparison of ORR performance of Co/N-BCNTs materials with published

state-of-the-art Co-N-C catalysts in 0.1M KOH electrolyte solution.

Figure S1. TEM images of (a) $g-C_3N_4$ and (b) $Zn/Co-ZIF@g-C_3N_4$.

Figure S2. AFM images of N-CNS.

Figure S3. TEM images of (a) Co/N-BCNTs-800 and (b) Co/N-BCNTs-1000.

Figure S4. TEM images of (a) Zn-Co-ZIF-900, (b) ZIF-8-900 and (c) ZIF-67-900.

Figure S5. TEM images of Zn/Co=X/Y derived Co/N-BCNTs. (a) Zn/Co=3 (b) Zn/Co=2 (c) Zn/Co=1/2 (d) Zn/Co=1/3.

Figure S6. XRD patterns of Zn/Co=X/Y derived Co/N-BCNTs.

Figure S7. LSV curves in an O_2 -saturated 0.1 M KOH solution at a sweep rate of 10 mV s⁻¹ and electrode rotation speed of 1600 rpm.

Figure S8. (a) LSV curves for N-CNS at various rotation rates. (b) Corresponding Kouteck–Levich plots derived from the RDE data. (c) LSV curves for Co/N-CNTFs at various rotation rates. d) Corresponding Kouteck–Levich plots derived from the RDE data.

Sample	С	0	Ν	Со	Zn
Co/N-BCNTs	83.51	7.03	8.04	1.38	0.05
N-GNS	77.25	13.77	7.59	0	1.39
Co-CNTFs	87.50	8.49	3.47	0.54	0
Co-BCNT-800	83.3	8.58	7.22	0.79	0.11
Co-BCNT-1000	86.5	5.91	6.26	1.31	0.02

Table S1. Elemental contents of the synthesized catalysts determined by XPS spectra

Sample	Pyridinic N	Pyrrolic N	Graphitic N
	(%)	(%)	(%)
Co/N-BCNTs	2.49	1.93	3.62
N-CNS	0	4.10	3.49
Co/N-CNTFs	1.21	1.11	1.45
Co/N-BCNTs-800	2.82	2.45	1.88
Co/N-BCNTs-1000	2.07	1.75	2.44

 Table S2. Percentage of various nitrogen species determined by XPS spectra

Catalysts	Loading (mg cm ⁻²)	Half-wave Potential (V vs. RHE)	Activity vs. Pt/C	Ref.
Co/N-BCNTs	0.20	~0.83	better	This work
Zn/Co@C-NCNFS	0.18	0.77	worse	S1
Co _{0.85} Se@NC	0.41	~0.82	worse	S2
Co@NPC-acid		0.75	worse	S3
Co-N-C-0.4	0.40	0.84	comparable	S4
SUCo-0.03-800	0.10	0.82	worse	85
Co@N-PGCS	0.51	0.81	better	S 6
Co-N/C 800	0.24	0.78	worse	S7
ZIF/rGO-700-AL	0.41	~0.83	comparable	S 8
Co-N/C (Co-A NSs)	0.40	0.84	worse	S 9
Co/N-C-800	0.25	~0.77	worse	S10
Co ₁₀ -NMCV	0.15	~0.76	worse	S11
Co ₁₅ -N-C800	0.49	~0.82	comparable	S12

Table S3. Comparison of ORR performance of Co/N-BCNTs materials with the state-of-the-art Co-N-C catalysts in 0.1M KOH electrolyte solution

References

[S1] Q. Niu, J. Guo, B. Chen, J. Nie, X. Guo, G. Ma, Carbon, 2017, 114, 250-260.

[S2] T. Meng, J. Qin, S. Wang, D. Zhao, B. Mao, M. Cao, J. Mater. Chem. A, 2017, 5, 7001-7014.

[S3] H. Liu, M.Q. Wang, Z.Y. Chen, H. Chen, M.W. Xu, S.J. Bao, *Dalton Trans*, 2017, 46, 15646-15650.

[S4] E. Hu, J. Ning, B. He, Z. Li, C. Zheng, Y. Zhong, Z. Zhang, Y. Hu, *J. Mater. Chem. A*, 2017, **5**, 2271-2279.

[S5] G. Zhang, W. Lu, F. Cao, Z. Xiao, X. Zheng, J. Power Sources, 2016, 302, 114-125.

[S6] X. Liu, I.S. Amiinu, S. Liu, K. Cheng, S. Mu, Nanoscale, 2016, 8, 13311-13320.

[S7] W. Hu, Q. Wang, S. Wu, Y. Huang, J. Mater. Chem. A, 2016, 4, 16920-16927.

[S8] J. Wei, Y. Hu, Z. Wu, Y. Liang, S. Leong, B. Kong, X. Zhang, D. Zhao, G.P. Simon, H. Wang, *J. Mater. Chem. A*,2015, **3**, 16867-16873.

[S9] M. Shen, L.-R. Zheng, W. He, C. Ruan, C. Jiang, K. Ai, L. Lu, Nano Energy, 2015, 17, 120-130.

[S10] Y. Su, Y. Zhu, H. Jiang, J. Shen, X. Yang, W. Zou, J. Chen, C. Li, *Nanoscale*, 2014, **6**, 15080-15089.

[S11] M. Li, X. Bo, Y. Zhang, C. Han, A. Nsabimana, L. Guo, J. Mater. Chem. A, 2014, 2, 11672.

[S12] Y. Qian, Z. Liu, H. Zhang, P. Wu, C. Cai, ACS Appl. Mater. Interfaces, 2016, 8, 32875-32886.