Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information (ESI)

Hierarchically porous Mo-doped Ni-Fe oxide nanowires efficiently catalyzing oxygen/hydrogen evolution reactions

Yangjia Chen,^{a,†} Chaoqun Dong,^{a,†} Jie Zhang,^a Chi Zhang,^b Zhonghua Zhang^{a,b,*}

^aKey Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education),

School of Materials Science and Engineering, Shandong University, Jingshi Road 17923, Jinan 250061, P.R.

China

^bSchool of Applied Physics and Materials, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, P.R.

China

[†] These authors equally contribute to this work.

*Corresponding author. Email: zh_zhang@sdu.edu.cn (Z. Zhang)

ingotrapid solidificationribboncatalystScheme S1. Schematic diagrams (top) and photographs (bottom) showing the preparationprocess of the Ni_2Fe_1 -Mo nanowire electrocatalysts.

Figure S1. XRD pattern of the rapidly-solidified $Al_{96.5}Ni_2Fe_1Mo_{0.5}$ precursor ribbons.

Figure S2. SEM image of the Ni₂Fe₁-Mo catalyst.

Figure S3. TEM images of the Ni₂Fe₁-Mo catalyst.

Figure S4. SEM image of the Ni₂Fe₁ catalyst.

Figure S5. (a) TEM image and (b) SAED pattern of the Ni_2Fe_1 catalyst.

Figure S6. XRD patterns of the $Al_{96.5}Ni_2Fe_1Mo_{0.5}$ precursor alloy after different dealloying time, showing the phase transformation information occurred during the dealloying process.

Figure S7. XPS spectrum of the Ni_2Fe_1 -Mo catalyst.

Figure S9. OER polarization curves of the Ni_2Fe_1 -Mo catalyst with different loadings on GC: 150, 200 and 250 µg cm⁻².

Figure S10. Equivalent circuit used for simulating the Nyquist plot in Figure 3c.

Figure S11. HER polarization curves of the Ni_2Fe_1 -Mo catalyst with different loadings on GC: 150, 200, 250 and 300 µg cm⁻².

Figure S12. HER Tafel slopes of different catalysts on GC.

Figure S13. Comparison of polarization curves of the Ni foam-supported Ni₂Fe₁-Mo electrode before and after stability test for (a) OER and (b) HER.

Table S1. Comparison of the OER performance of the Ni_2Fe_1 -Mo with other reported catalysts in 1 M KOH.

Samples	Mass	Electrod	Overpotential	Tafel	Reference
	Loading	e	at 10 mA cm ⁻²	slope	
	(mg cm ⁻²)		(mV)	(mV	
				dec ⁻¹)	
Ni ₂ Fe ₁ -Mo	0.2	GC	231	39	This work
Ni ₂ Fe ₁	0.2	GC	244	39	Our
					previous
					work
NiO/Ni		Ni plate	294	41	1
Co ₃ O ₄	2.2	Co plate	268		2
Ni ₁₂ P ₅	~3	Ni foam	240		3
Fe-CoP	1.03	Ti foam	230	67	4
NiFe@nitrogen-	0.2	GC	310	56	5
doped carbon					
NiFe@nitrogen-	0.288	GC	239	75	6
doped carbon					
SrNb _{0.1} Co _{0.7} Fe _{0.2} O ₃₋	0.232	GC	370	48	7
δ					
NiFe _{0.52} -LDH	0.14	GC	344	97	8
Na _{0.08} Ni _{0.9} Fe _{0.1} O ₂		GC	260	44	9
NiFe hydroxide		GC	240	38.9	10
N, S-doped CNT		GC	360	56	11
MoO ₂	2.9	Ni foam	260	54	12
Fe _{0.4} Co _{0.6}	1.2	CFP	283	34	13
Ni _{1.5} Fe _{0.5} P	1.38	CF	264	55	14

Samples	Mass	Overpotential	Stability	Reference
	Loading (mg	at 10 mA cm ⁻²	(h)	
	cm ⁻²)	(V)		
Ni ₂ Fe ₁ -Mo@Ni foam	1.26	1.62	63.5	This work
Fe _{0.4} Co _{0.6} @carbon fier	1.6	1.68	10	13
paper				
NiO/Ni@Ni plate		1.7	25	1
SrNb _{0.1} Co _{0.7} Fe _{0.2} O ₃₋	~3	>1.68	30	7
$_{\delta}$ (a) Al foil				
NiFe@nitrogen-doped		1.81	15	5
carbon				
Ni/Mo ₂ C@porous	~2	1.66	10	15
carbon				
Ni _x Co _{3-x} O ₄ @glassy		1.77		16
carbon				
CoFe-LDH@Cu foam	1.8	1.681	48	17
Co ₅ Mo ₁ Composite		1.68	30	18
@Ni foam				
3D Co(OH) ₂ @N-doped		1.72	600	19
CNTs@Ni foam				
S-NiFe ₂ O ₄ @Ni foam		1.65	24	20
Co ₂ P@Co foil	1.42	>1.71	14	21
Nitrogen & Fluorine		1.91	12	22
@porous graphene				
nanosheets				
Defect-rich porous		1.74	12	23
carbon				
NiZn-MOFs@Ni foam	1	1.65	24	24

Table S2. Comparison of overall water splitting performance of the Ni_2Fe_1 -Mo bifunctional catalyst with other reported catalysts in 1 M KOH.

References

- 1 G. Ou, P. Fan, H. Zhang, K. Huang, C. Yang, W. Yu, H. Wei, M. Zhong, H. Wu, Y. Li, *Nano Energy*, 2017, **35**, 207-214.
- 2 G. Cheng, T. Kou, J. Zhang, C. Si, H. Gao, Z. Zhang, Nano Energy, 2017, 38, 155-166.
- 3 P.W. Menezes, A. Indra, C. Das, C. Walter, C. Göbel, V. Gutkin, D. Schmeißer, M. Driess, *ACS Catal.*, 2017, 7, 103-109.
- 4 C. Tang, R. Zhang, W. Lu, L. He, X. Jiang, A.M. Asiri, X. Sun, *Adv. Mater.*, 2017, **29**, 1602441-1602446.
- 5 Z. Zhang, Y. Qin, M. Dou, J. Ji, F. Wang, Nano Energy, 2016, 30, 426-433.
- 6 L. Du, L. Luo, Z. Feng, M. Engelhard, X. Xie, B. Han, J. Sun, J. Zhang, G. Yin, C. Wang, Y. Wang, Y. Shao, *Nano Energy*, 2017, **39**, 245-252.
- 7 Y. Zhu, W. Zhou, Y. Zhong, Y. Bu, X. Chen, Q. Zhong, M. Liu, Z. Shao, *Adv. Energy Mater.*, 2017, 7, 1602122-1602130.
- 8 L. J. Zhou, X. Huang, H. Chen, P. Jin, G.D. Li, X. Zou, *Dalton Trans.*, 2015, 44, 11592-11600.
- 9 B. Weng, F. Xu, C. Wang, W. Meng, C.R. Grice, Y. Yan, *Energy Environ. Sci.*, 2017, **10**, 121-128.
- 10 W. Zhang, Y. Wu, J. Qi, M. Chen, R. Cao, Adv. Energy Mater., 2017, 7, 1602547-1602552.
- 11 K. Qu, Y. Zheng, Y. Jiao, X. Zhang, S. Dai, S.-Z. Qiao, Adv. Energy Mater., 2017, 7, 1602068-1602075.
- 12 Y. Jin, H. Wang, J. Li, X. Yue, Y. Han, P.K. Shen, Y. Cui, *Adv. Mater.*, 2016, **28**, 3785-3790.
- 13 W. Liu, K. Du, L. Liu, J. Zhang, Z. Zhu, Y. Shao, M. Li, Nano Energy, 2017, 38, 576-584.
- 14 H. Huang, C. Yu, C. Zhao, X. Han, J. Yang, Z. Liu, S. Li, M. Zhang, J. Qiu, *Nano Energy*, 2017, **34**, 472-480.

15 Z.Y. Yu, Y. Duan, M.R. Gao, C.C. Lang, Y.R. Zheng, S.H. Yu, *Chem. Sci.*, 2017, **8**, 968-973.

- 16 J.A. Vigil, T.N. Lambert, B.T. Christensen, J. Mater. Chem. A, 2016, 4, 7549-7554.
- 17 L. Yu, H. Zhou, J. Sun, F. Qin, D. Luo, L. Xie, F. Yu, J. Bao, Y. Li, Y. Yu, S. Chen, Z. Ren, *Nano Energy*, 2017, **41**, 327-336.
- 18 Y. Zhang, Q. Shao, S. Long, X. Huang, Nano Energy, 2018, 45, 448-455.
- 19 P. Guo, J. Wu, X.-B. Li, J. Luo, W.-M. Lau, H. Liu, X.-L. Sun, L.-M. Liu, *Nano Energy*, 2018, In Press, https://doi.org/10.1016/j.nanoen.2018.02.032.

- 20 J. Liu, D. Zhu, T. Ling, A. Vasileff, S.-Z. Qiao, Nano Energy, 2017, 40, 264-273.
- 21 C.-Z. Yuan, S.-L. Zhong, Y.-F. Jiang, Z.K. Yang, Z.-W. Zhao, S.-J. Zhao, N. Jiang, A.-W. Xu, *J. Mater. Chem. A*, 2017, **5**, 10561-10566.
- 22 X. Yue, S. Huang, J. Cai, Y. Jin, P.K. Shen, J. Mater. Chem. A, 2017, 5, 7784-7790.
- 23 Z. Zhang, Z. Yi, J. Wang, X. Tian, P. Xu, G. Shi, S. Wang, J. Mater. Chem. A, 2017, 5, 17064-17072.
- 24 Y. Wang, W. Wu, Y. Rao, Z. Li, N. Tsubaki, M. Wu, J. Mater. Chem. A, 2017, 5, 6170-6177.