Interfacial synergism of Pd-decorated BiOCl ultrathin nanosheets for selective oxidation of aromatic alcohols

Benxia Li*^[a], Liangzhi Shao^[a], Renshan Wang^[a], Xiaoping Dong^[a], Fugang Zhao^[a],

Peng Gao^[b], Zhengquan Li^[c]

- ^[a] Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
- ^[b] College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 310026, P. R. China
- ^[c] Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang 321004, P. R. China
- *Corresponding Author. Benxia Li: libx@mail.ustc.edu.cn

Figure S1. Schematic diagram of the experiment set-up for photocatalytic reactions.

Figure S2. (a) XRD pattern, (b) SEM image, and (c) TEM image of BiOCl ultrathin

nanosheets.

Figure S3. XRD patterns of (a) Au-BiOCl and (b) Pd-BiOCl samples.

Figure S4. Optimized structures of (a) BiOCl(001), (b) Au-BiOCl(001), and (c) Pd-

BiOCl (001) surface models with a $V_{\rm O}$ site.

Figure S5. CBM and VBM of (a-b) BiOCl(001), (c-d) Au-BiOCl(001), and (e-f) Pd-

BiOCl (001).

Figure S6. CBM and VBM of the different material systems with the adsorbed O_{2} . (a-

b) bare, (c-d) Au decorated, (e-f) Pd decorated BiOCl (001) with a $V_{\rm O}$ site,

respectively.

Figure S7. CBM and VBM of the different material systems with the adsorbed benzyl alcohol. (a-b) bare, (c-d) Au decorated, (e-f) Pd decorated BiOCl (001) with a V_0 site,

respectively.

Figure S8. Schematic illustrations for photocatalytic reactions carried out in air and

pure O₂ atmosphere, respectively.

Sample	Theoretical Au(or Pd) contents (wt.%) ^a	Actual Au (or Pd) contents (wt.%) ^b
Au-BiOCl	1.5	1.24
Pd-BiOCl	1.5	1.31

 Table S1. Theoretical and ICP-OES measured metal loading amounts of the photocatalysts.

 a The theoretical metal loading mass percent calculated from the experimental dosage of HAuCl_4 or (NH_4)_2PdCl_4 for photo-deposition.

^b The actual mass percent of metal in each photocatalyst from the ICP-OES measured results.

Table S2. The Hirshfeld charge of each atom in the different material systems and the adsorption energies for O_2 (E_{ads+O2}) and C_7H_8O ($E_{ads+C7H8O}$) on different surfaces, respectively.

System	e _{Bi}	e _{Cl}	eo	e _M	E _{ads+O2} (eV)	E _{ads+C7H8O} (eV)
BiOCl	0.09*2 0.35*2 0.48*4 0.56*18	-0.22*27	-0.34*17 -0.36*18		-2.442	-0.554
Au-BiOCl	0.30*4 0.42*4 0.56*18	-0.20*3 -0.22*10 -0.24*14	-0.33*4 -0.35*27 -0.37*4	0.05*1 -0.01*3 -0.03*4 -0.04*4	-1.213	-0.827
Pd-BiOCl	0.27*4 0.35*2 0.48*2 0.57*28	-0.21*6 -0.22*10 -0.24*11	-0.34*10 -0.35*11 -0.37*14	-0.02*2 -0.04*4 -0.07*3 -0.09*3	-1.611	-1.094

Table S3. Lifetimes (τ_1 , τ_2 and τ_m^a) and relative intensities (A_i) obtained by fitting the time-resolved PL decay spectra of BiOCl, Au-BiOCl and Pd-BiOCl to a bi-exponential decay function.

Sample	τ ₁ /ns(int ₁)	$\tau_2/ns(int_2)$	τ _m /ns
BiOCI	0.295(0.868)	2.320(0.132)	0.560
Au-BiOCl	0.298(0.878)	3.200(0.122)	0.645
Pd-BiOCl	0.800(0.828)	3.597(0.172)	1.283

^{*a*} average lifetime, $\tau_{\rm m} = \frac{\mathbf{A}_1 \cdot \tau_1 + \mathbf{A}_2 \cdot \tau_2}{\mathbf{A}_1 + \mathbf{A}_2}$

Table S4. Photocatalytic oxidation of benzyl alcohol to benzaldehyde over the different

Photocatalyst	Atmosphere	Conversion (%)	Yield(%)	selectivity (%)
BiOCl	Air	46	46	>99
L-BiOCl	Air	58	58	>99
Au-BiOCl	Air	71	71	>99
	Air	99	99	>99
Pd-BiOCl	O ₂	62	62	>99
	N ₂	37	37	>99
Pd/BiOCl*	Air	76	76	>99

photocatalysts under UV-vis irradiation for 8 h ^a.

^a In a typical reaction, 1 mg of catalyst was added to 2 mL of acetonitrile in a quartz tube, 50 µmol of benzyl alcohol were injected into the quartz tube. Keep the quartz tube sealed and start illuminating.

*The Pd/BiOCl sample was prepared by simply soaking BiOCl nanosheets into a Pd nanoparticles solution which was obtained by the reduction of $(NH_4)_2$ PdCl₄ using NaBH₄.

Aromatic alcohol	Conversion (%)	Yield (%)	Selectivity (%)
Benzyl alcohol	99	92.07	>99
4-Methylbenzyl alcohol	81	80.19	>99
4-Methoxybenzyl alcohol	47	47	>99
Cinnamyl alcohol	47	47	>99
2-Phenylethanol	40	40	>99

Table S5. Photocatalytic selective oxidation of various aromatic alcohols to corresponding aldehydes over Pd-BiOCl under UV-vis irradiation for 8 h^a

 a In a typical reaction, 1mg of catalyst was added to 2 mL of acetonitrile in a quartz tube, 50 μ mol of aromatic alcohol were injected into the quartz tube. Keep the quartz tube sealed and start illuminating.

Table S6. Photocatalytic oxidation of benzyl alcohol to benzaldehyde over Pd-BiOCl

Scavenger	Conversion (%)	Yield (%)	Selectivity (%)
No scavenger	99	92.07	>99
IPA	89	84.55	>99
BQ	52	52	>99
EDTA-2Na	36	36	>99

by adding different scavengers under UV-Vis irradiation for 8 h ^a.

^a In a typical reaction, 1mg of catalyst was added to 2 mL of acetonitrile in a quartz tube, 50 µmol of benzyl alcohol and 0.05mol/L scavengers were injected into the quartz tube. Keep the quartz tube sealed and start illuminating.