Supporting Information

A separator-based lithium polysulfides recirculator for high-loading and high-performance Li-S batteries

Ming Li,[‡]^a Chao Wang,[‡]^{b,c*} Lixiao Miao,^d Jingwei Xiang, ^a Tanyuan Wang, ^a Kai Yuan, ^a Jitao Chen,^{e*} Yunhui Huang ^{a,b*}

^a State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China.

^b Institute of New Energy for Vehicles; School of Materials Science and Engineering, Tongji University, Shanghai 201804, PR China.

^c Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

^d Sound Group Institute of New Energy, Beijing, PR China.

^e College of Chemistry and Molecular Engineering, Peking University, Beijing, PR China.

‡ Chao Wang and Ming Li contributed equally to this work.

Fig. S1 (a) (b) The digital photo and SEM images of Celgard separator. (c) (d) The digital photo and SEM images of MoP/rGO modified separator.

Fig. S2 (a) The SEM image of S/C composites. (b) The TGA curve of S/C composites under Ar atmosphere.

Fig. S3 (a) (b) The SEM images of pure rGO. (c) (d) The SEM images of bulk MoP.

Fig. S4 (a) XRD patterns of MoP/rGO, rGO and MoP. (b) TGA curve of MoP/rGO composites under air atmosphere (the final product is MoO_3). (c) N_2 adsorption-desorption isotherms of MoP/rGO composites. (d) The pore size distribution of the MoP/rGO composites.

To confirm the rGO content of the composites, the TGA measurement was made at $0\sim600$ °C under air atomosphere. The final product of MoP/rGO composites was MoO₃. From the TGA results, the mass of MoO₃ was about 26.3 % of the total mass.

So the content of MoP in initial composites was 26.3 % * 127/144 = 23.2 % (the relative molecular mass of MoP and MoO₃ are 127 and 144, respectively), which means the rGO content of the composites was about 76.8 %.

Fig. S5 (a) wide-scan, (b) P 2p and (c) Mo 3d XPS spectra of MoP/rGO composites.

Polysulfides Adsorption Experiment

The Li₂S₆ solution was prepared as follows. S₈ and Li₂S were dissolved in 1, 3-dioxolane (DOL) and 1, 2-dimethoxyethane (DME) (1:1 by volume) with a molar ratio of 5:8. Then the mixture was stirred at 60 °C for 24 h in Argon-filled glovebox. The concentration of the obtained Li₂S₆ solution was 1 mg mL⁻¹. An equivalent amount (10 mg) of different polysulfide host materials (MoP/rGO, rGO and bulk MoP for comparison) were immersed into a 2 mL Li₂S₆ solution and held for 2 h.

Fig. S6 Different cycles of galvanostatic discharge-charge curves of MoP/rGO composite between 1.8 and 2.8 V at 0.5 C.

Fig. S7 Galvanostatic discharge-charge profiles of cells with different separators at rate of 0.1C and 0.5C.

Fig. S8 Galvanostatic discharge-charge profiles of pouch cells with (a) MoP/rGO modified separator, (b) Celgard separator separators at different cycles.

Fig. S9 (a) Photograph of lithium anodes in cells with different separators after cycling. (b) (c) SEM images of the surface faced to the lithium anode of Celgard and MoP/rGO coated separator, respectively.

Fig. S10 (a) XRD patterns of MoP/rGO modified separator before and after cycles; (b) XRD patterns of Celgard separator.

Fig. S11 The electrochemical impedance spectra of cells with MoP/rGO coated separator and Celgard separator in full charge state after 100 cycles.

Fig. S12 Interface resistance of R_{sf2} of cell with Celgard Separator in full charged states for 100 cycles.

	Interlayers	Sulfur mass	Cathode	Electrochemical performance			
Interlayers	mass loading (mg cm ⁻²)	loading (mg cm ⁻²)	(Sulfur content)	Rate	Initial Capacity (mAh g ⁻¹)	Cycles	Capacity decay rate
MoP/rGO	0.35~0.45	3.6 ~ 4	CNT/S	0.1 C	1125	100	0.15%
			(77%)	0.5 C	880	300	0.045%
Li ₄ Ti ₅ O ₁₂ / graphene	0.346	1.0 ~ 1.2	CNT/S 60%	1 C	813	500	0.029%
Boron-rGO	0.2~0.3	1.5	CNT/S (56%)	0.1 C	1227	300	0.153%
TiO ₂ /graphene	0.13	1.2	CNT/S (82%)	0.5 C	802	250	0.072%
TiO ₂ /carbon	0.2	2	C/S (60%)	0.5 C	920	200	0.087%
MoS_2	N/A	N/A	C/S (65%)	0.5 C	808	600	0.083%
MWCNTs/ NCQDs	0.15	1.3 ~ 1.5	C/S (60%)	0.5 C	1330	500	0.1%
Black P	0.4	1.5 ~ 2	C/S (66%)	0.5 C	930	100	0.14%
GO	0.12	1~1.5	CNT/S (63%)	0.1 C	920	100	0.23%

Table S1 Comparison of performance of Li-S batteries with different interlayers

Reference:

- [S1] Y. Zhao, M. Liu, W. Lv, Y. B. He, C. Wang, Q. B. Yun, B. H. Li, F. Y. Kang and Q. H. Yang, Nano Energy, 2016, 30, 1–8.
- [S2] F. Wu, J. Qian, R. J. Chen, Y. S. Ye, Z. G. Sun, Y. Xing and L. Li, J. Mater. Chem. A, 2016, 4, 17033-17041.

[S3] Z. B. Xiao, Z. Yang, L. Wang, H. G. Nie, M. E. Zhong, Q. Q. Lai, X. J. Xu, L. J. Zhang and S. M. Huang, Adv. Mater., 2015, 27, 2891–2898.

[S4] H. Y. Shao, W. K. Wang, H. Zhang, A. B. Wang, X. N. Chen and Y. Q. Huang, Journal of Power Sources, 2018, 378, 537 – 545.

[S5] Z. A. Ghazi, X. He, A. M. Khattak, N. A. Khan, B. Liang, A. Iqbal, J. X. Wang,H. S. Sin, L. S. Li and Z. Y. Tang, Adv. Mater., 2017, 29, 1606817.

[S6] Y. Pang, J. S. Wei, Y. G. Wang and Y. Y. Xia, Adv. Energy Mater., 2018, 1702288.

[S7] J. Sun, Y. Sun, M. Pasta, G. Zhou, Y. Li, W. Liu and F. Xiong, Y. Cui, Adv. Mater., 2016, 28, 9797.

[S8] J. Huang, T. Zhuang, Q. Zhang, H. Peng, C. Chen and F. Wei, ACS Nano, 2015, 9, 3002.