Supporting Information

Plasmon-Enhanced Electrocatalytic Hydrogen/ Oxygen Evolution by Pt/Fe-Au Nanorods

Xia Guo, ^a Xiaotong Li,^b Shufang Kou, ^b Xianfeng Yang,^c Xi Hu,^a Daishun Ling,^{a*} and Jian Yang^{b*}

a Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, PRC

b Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PRC

c Analytical and Testing Center, South China University of Technology, Guangzhou 510640, PRC

Fig. S1 TEM image of the original Au nanorods.

Fig. S2 EDS spectrum of the dumbbell-like Pt/Fe-Au nanorods.

Fig. S3 UV-vis absorption spectra of the original Au nanorods and dumbbell-like Pt/Fe-Au nanorods.

Fig. S4 TEM image, size distribution and XRD pattern of the obtained Pt/Fe nanoparticles. The average size of the obtained Pt/Fe nanoparticles is 3.21 ± 0.57 nm.

Fig. S5 TEM image of the mixture of Pt/Fe nanoparticles and Au nanorods.

Fig. S6 (a) TEM image of Au@Pt/Fe core-shell nanorods and (b) UV-vis absorption spectra of the original Au nanorods and Au@Pt/Fe core-shell nanorods.

Catalysts	Onset potential (mV)	$\eta @ j = 10 \text{ mA}$ cm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	Exchange current density (mA cm ⁻²)	TOF@ 50 mV vs RHE (H ₂ s ⁻¹)
Au	-211	357	114.7	0.011	
Irradiated Au	-210	336	113.8	0.015	
Pt/Fe	-10	39	27.3	0.41	0.66
Irradiated Pt/Fe	-10	39	27.3	0.45	0.73
Au + Pt/Fe	-12	41	29.1	0.34	0.58
Irradiated Au + Pt/Fe	-12	40	29.1	0.42	0.61
Au@Pt/Fe	-13	38	29.4	0.57	0.42
Irradiated Au@Pt/Fe	-7	32	28.6	0.83	0.69
Pt/Fe-Au	-13	43	30.6	0.31	0.44
Irradiated Pt/Fe-Au	0	18	29.3	3.16	2.28

Table S1. Onset potential, $\eta @$ j = 10 mA cm⁻², Tafel slope, exchange current density (j_0) and TOF @ 50 mV vs RHE of different catalysts.

The TOF was calculated by using an equation of $TOF = jN_A/nFN$, where *j* is the current density (A cm⁻²), N_A is the avogadro number, n=2 is the number of electrons consumed in the electrode reaction, F is the Faraday constant and N is the number of active sites in an unit area.

Fig. S7. HER polarization curves (with iR-correction) of commercial Pt/C in 0.5 M H_2SO_4 . The scan rate is 2 mV s⁻¹.

Fig. S8 (a) Polarization curves of Pt/Fe-Au nanorods without (black line), with (red line) light irradiation , with (blue line) light on and off (808 nm) and the electrocatalytic HER behavior of the Pt/Fe-Au nanorods in the dark after one irradiation cycle (yellow line) and (b) gas chromatography (GC) measurements of various samples but keep the same reaction time. Black line: pure H_2 collected from the gas cylinder; red line: gas collected from the catalysts under 808 nm laser irradiation; and blue line: gas collected from the catalysts in the dark.

Fig. S9 Polarization curves (with iR-correction) of different catalysts with and without light irradiation (808 nm). (a) Au; (b) Pt/Fe; (c) Au+Pt/Fe; and (d) Au@Pt/Fe. The scan rate is 2 mV s⁻¹.

HER in acidic media starts with a discharge reaction, three possible reaction steps are as following:

Equ. S1	$H_{(aq)} + e^{-} \rightarrow H_{ads}$	(Volmer reaction)
Equ. S2	$H_{ads} + H_{(aq)} + e^- \rightarrow H_{2(g)}$	(Heyrovsky reaction)
Equ. S3	$H_{ads} + H_{ads} \rightarrow H_{2(g)}$	(Tafel reaction)

Fig. S10 The Tafel plots of Pt/Fe, Au+Pt/Fe, Au@Pt/Fe and Pt/Fe-Au with and without light excitation (808 nm).

Fig. S11 (a) HER polarization curves of Pt/Fe-Au nanorods measured in $0.5 \text{ M H}_2\text{SO}_4$ before and after 1000 cycles of cyclic voltammetry and (b) TEM image of Pt/Fe-Au nanorods after repeated cycles. The scan rate is 2 mV s⁻¹.

Fig. S12 HER polarization curves of Pt/Fe-Au nanorods with (a) and without (b) light excitation (808 nm) at different temperature and (c,d) Arrhenius plots of ln *j versus* inverse temperature for Pt/Fe-Au nanorods with (c) and without (d) light excitation (808nm) at various overpotentials. Overpotentials are taken from 20 to 50 mV at an interval of 10 mV.

The E_a for Pt/Fe-Au nanorods with and without 808 nm laser excitation were calculated from the slope of the Arrhenius plot. The Arrhenius equation is described as: $j = Ae^{-Ea/RT}$, and can be written equivalently as: $\ln j = \ln A - (E_a/R)(1/T)$, where A is pre-exponential factor, E_a is activation energy, R is gas constant and T is reaction temperature.

Fig. S13 TOF values of Pt/Fe-Au nanorods with and without light excitation (808 nm) at different overpotentials.

Fig. S14 OER polarization curves (with iR-correction) of Pt/Fe nanoparticle and gold nanorods with and without light excitation (808 nm). The scan rate is 5 mV s⁻¹.