Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting Information

"Understanding the Crucial Role of Local Crystal Order in Electrocatalytic

Activity of Crystalline Manganese Oxide"

Jang Mee Lee,^a Sharad B. Patil,^a Bohyun Kang,^a Seul Lee,^a Min Gyu Kim,^b and Seong-Ju Hwang^{a,*}

^a Center for Hybrid Interfacial Chemical Structure (CICS), Department of Chemistry and

Nanoscience, College of Natural Sciences, Ewha Womans University, Seoul 03760, Republic

of Korea

^b Pohang Light Source, Pohang 37673, Republic of Korea

Fig. S1 (A) Schematic model for synthesis of Fe-substituted α -Mn_{1-x}Fe_xO₂ nanowire. (B) Powder X-ray diffraction (XRD) patterns with Rietveld fits for (a) unsubstituted **FMO0** and (b) Fe-substituted **FMO10**. Experimental data, calculated profiles, allowed Bragg reflection positions, and difference curve are presented with black circles, red line, vertical bars, and blue line, respectively.

: As illustrated in Fig. S1A, Fe-substituted α -Mn_{1-x}Fe_xO₂ nanowires are synthesized by hydrothermal reaction of the ion-adducts of MnO4--Fe2+. As presented in the Rietveld refinement results of Fig. S1B, all the powder XRD peaks of the present α -Mn_{1-x}Fe_xO₂ (x = 0 and 0.1) materials are well-reproduced with tetragonal (I4/m) α -MnO₂ structure composed of corner- and edge-shared MnO₆ octahedra with 2×2 tunnels,^{1,2} confirming the successful substitution of Mn with Fe without the formation of impurity phase.

	FMO0	FMO10
<i>a</i> (Å)	9.84	9.89
<i>b</i> (Å)	9.84	9.89
<i>c</i> (Å)	2.85	2.86
cell vol.	276	280
R_{wp} (%)	6.66	9.21
$R_{p}(\%)$	5.15	7.03
reduced χ^2	3.60	6.33

 Table S1. Crystallographic data and fitting details of Rietveld refinements.

: The larger lattice parameters and volumes are estimated from the XRD patterns measured in Fourier transform (FT) mode for the unsubstituted **FMO0** and its Fe-substituted **FMO10**.

Fig. S2 Energy dispersive spectrometry (EDS)–elemental maps of FMO10.

: As illustrated in Fig. S2, homogeneous Fe substitution in the **FMO10** nanowire is cross-confirmed by EDS-elemental mapping analysis showing the uniform distributions of Mn, Fe, and O elements.

Fig. S3 (Top) Field emission-scanning electron microscopy (FE-SEM) images, and (bottom) high resolution-transmission electron microscopy (HR-TEM) images of unsubstituted FMO0 and Fe-substituted FMO10.

: The inset of HR-TEM graph shows the lattice fringe of each material. In the FE-SEM images of Fig. S3A, all the present α -Mn_{1-x}Fe_xO₂ (x = 0 and 0.1) materials display 1D nanostructure morphology. In comparison with the FMO0, the FMO10 exhibits shorter length of several hundreds of nanometer, reflecting the remarkable frustration of the 1D crystal growth of α -MnO₂ nanowire caused by the substitution of Fe ion. The morphological evolutions of α -MnO₂ nanowire upon the Fe substitution are further evidenced by HR-TEM, see Fig. S3B. The observation of clear lattice fringes corresponding to the (301), (200), and (220) planes of α -MnO₂ structure verifies the maintenance of tetragonal α -MnO₂ lattice in present the materials.

Fig. S4 N_2 adsorption-desorption isotherms of FMO0 and FMO10. The close and open symbols represent the adsorption and desorption data, respectively.

: As shown in N₂ adsorption–desorption isotherms of Fig. S4, all the present materials commonly exhibit distinct hysteresis at p $p_0^{-1} > 0.5$, indicating the presence of mesopores originating from the stacking structure of 1D nanowires. Based on Brunauer–Emmett–Teller (BET) equation, the surface area of the Fe-substituted material is determined as 112 m² g⁻¹ for **FMO10**, which is greater than that of unsubstituted **FMO0** (64 m² g⁻¹). This result clearly demonstrates the beneficial role of Fe substitution in expanding the surface area of α -MnO₂ nanowire.

Fig. S5 (Left) Linear sweep voltammetry (LSV) curves and (right) Tafel slope of FMO0 (squares), FMO10 (circles), and the physical mixture of α -MnO₂ and Fe₂O₃ (triangles) with the same Fe/Mn ratio as that of FMO10 measured in an anodic direction.

: As plotted in Fig. S5, the physical mixture of α -MnO₂ and Fe₂O₃ shows much poorer electrocatalyst performance with smaller current density, higher overpotential, and higher Tafel slope than does the Fe-substituted FMO10, highlighting the negligible contribution of Fe ion as an OER active site. This result clearly demonstrates that the enhancement of OER activity upon the Fe substitution is attributable not to the role of substituted Fe ion as an electrocatalytically active site but to the modification of α lattice the partial replacement MnO_2 caused by of Mn with Fe.

Potential (V vs SCE)Potential (V vs SCE)Fig. S6 Cyclic voltammetry curves of (A) FMO0 and (B) FMO10 measured in 0.1 MKOH with different scan rates of 20, 40, 60, 80, 100, and 120 mV s⁻¹.

Potential (V vs SCE) Fig. S7 LSV curve normalized by the ECSA value for the FMO0 and FMO10 materials.

Fig. S8 (Left) XRD patterns and (right) LSV curves for α -Mn_{1-x}Fe_xO₂ with x = 0 (a, circles), 0.05 (b, squares), 0.1 (c, solid), 0.2 (d, dash), 0.3 (e, dash-dot-dot-dash), and 0.35 (f, triangles).

Fig. S9 *In-situ* Fe K-edge XANES spectra of FMO10 measured at the various potentials of 0, 0.55, and 0.8 V. The present spectra were obtained as fluorescence mode.

: As plotted	in Fig. S7,	applying of	oxidative	potentia	ils to Fe-sub	stituted FM	D10 causes
negligible	spectral	change	e in	Fe	K-edge	XANES	spectra.

Fig. S10 Equivalent circuits for the simulation of the EIS data measured at (A) 0, and 0.3 V, and (B) 0.55, 0.7, and 0.8 V.

.

	R _{sol}	R _{ct}	R _{ad}	R _{film}
FMO0 at 0 V	114.4			
FMO0 at 0.3 V	98.89			
FMO0 at 0.55 V	109.5	2757	816.8	1598
FMO0 at 0.7 V	70.86	29.46	55.62	24.75
FMO0 at 0.8 V	70.4	26.88	4.15	25.04
FMO10 at 0 V	93.66			
FMO10 at 0.3 V	67.69			
FMO10 at 0.55 V	83.21	8.76	172.5	45.71
FMO10 at 0.7 V	67.46	5.91	6.09	22.62
FMO10 at 0.8 V	73.23	0.98	2.79	7.43

Table S2. Simulated parameters for the electrochemical impedance spectroscopy (EIS) data measured at the various potentials of 0, 0.3, 0.55, 0.7, and 0.8 V. R_{sol} , R_{ct} , R_{ad} , and R_{film} represent solution resistance, charge transfer resistance, adsorption resistance, and film resistance, respectively.

Reference

- 1 S. L. Suib, Acc. Chem. Res., 2008, 41, 479-487.
- 2 S. L. Suib, J. Mater. Chem., 2008, 18, 1623–1631.