Electronic Supplementary Information

Ethynyl-linked Fe/Co Heterometallic Phthalocyanine Conjugated

Polymer for Oxygen Reduction Reaction

Wenping Liu,^a Yuxia Hou,^{a,c} Houhe Pan,^a Wenbo Liu,^a Dongdong Qi,^{*a} Kang Wang,^{*a,b}

Jianzhuang Jiang*^a and Xiangdong Yao^b

Fig. S1 TGA of CoPc-CP, Fe0.5C00.5Pc-CP, and FePc-CP.

Fig. S2 FT-IR spectra of (a) **CoPc-CP** and (b) **FePc-CP** as well as the corresponding phthalocyanine monomers in the region of 400-4000 cm⁻¹.

Fig. S3 UV-vis diffuse reflectance spectra of (a) **CoPc-CP** and (b) **FePc-CP** as well as the corresponding phthalocyanine monomers.

Fig. S4 ¹³C CP/MAS NMR spectra of CoPc-CP, Fe0.5C00.5Pc-CP, and FePc-CP.

Fig. S5 PXRD patterns of CoPc-CP, FePc-CP, and Fe0.5Co0.5Pc-CP.

Fig. S6 SEM and TEM images of (a, b) CoPc-CP, (c, d) Fe0.5Co0.5Pc-CP, and (e, f) FePc-CP.

Fig. S7 The STEM and elemental-mapping images of (a) Fe0.5Co0.5Pc-CP, (b) CoPc-CP, and (c) FePc-CP.

Fig. S8 XPS (a) overall spectra and (b) high resolution N 1s spectra of CoPc-CP, FePc-CP, and Fe0.5Co0.5Pc-CP.

Fig. S9 LSV curves of pure XC-72 and **Fe_{0.5}Co_{0.5}Pc-CP&XC-72** mixture with different contents measured at the scan rate of 10 mV s⁻¹ with the rotation speed of 1600 rpm in O₂-saturated 0.1 M KOH solution.

Fig. S10 LSV curves of pure XC-72 and **CoPc-CP&XC-72** mixture with different contents measured at the scan rate of 10 mV s⁻¹ with the rotation speed of 1600 rpm in O₂-saturated 0.1 M KOH solution.

Fig. S11 LSV curves of pure XC-72 and FePc-CP&XC-72 mixture with different contents measured at the scan rate of 10 mV s⁻¹ with the rotation speed of 1600 rpm in O₂-saturated 0.1 M KOH solution.

Fig. S12 LSV curves of (a) $Co[Pc(I)_4]$ & $Co[Pc(ethynyl)_4]$ (1:1) and **CoPc-CP** and (b) $Fe[Pc(I)_4]$ & $Fe[Pc(ethynyl)_4]$ (1:1) and **FePc-CP** at the scan rate of 10 mV s⁻¹ with the rotation speed of 1600 rpm in O₂-saturated 0.1 M KOH solution. All the date were measured by doping with 50 wt% XC-72.

Fig. S13 (a)(c)(e) CV conducted at potential from 0.97 V to 1.07 V *vs* RHE at scan rates of 20 mV s⁻¹, 40 mV s⁻¹, 60 mV s⁻¹, 80 mV s⁻¹, and 100 mV s⁻¹ in 0.1 M KOH. (b)(d)(f) The current densities of anode and cathode measured at 1.02 V *vs* RHE with different scan rates. (a)(b), (c)(d) and (e)(f) are **CoPc-CP** with 50 wt% XC-72, **FePc-CP** with 50 wt% XC-72, and **Fe0.5Co0.5Pc-CP** with 50 wt% XC-72, respectively.

To study the electrochemically active surface area (ECSA) of **CoPc-CP** with 50 wt% XC-72, **FePc-CP** with 50 wt% XC-72, and **Fe0.5Co0.5Pc-CP** with 50 wt% XC-72, we conducted the CV cycles at different scan rates during the potential from 0.97 V to 1.07 V *vs* RHE in 0.1 M KOH, where there is no Faradic current. At last, the ECSA was estimated from the as obtained double-layer capacitance (C_{dl}). According to C_{dl} is constant, it can be calculated as:

$$C_{dl} = Q/U = (dQ/dt)/(dU/dt) = j/r$$
(1)

Q is the quantity of electric charge per unit area,

U is the voltage,

j is the current density and

r is the scan rate.

From Eq(1), the C_{dl} is the slope of $j \sim r$, which can be obtained by the Figure S13b, d and f. The average C_{dl} of **CoPc-CP** with 50 wt% XC-72, **FePc-CP** with 50 wt% XC-72, and **Fe0.5Coo.5Pc-CP** with 50 wt% XC-72 are 0.36 mF/cm², 0.51 mF/cm², and 0.48 mF/cm², respectively. The ECSA can be calculated as:

 $ECSA = C_{dl}/C_s \tag{2}$

C_s is the specific capacitance value for a flat standard with 1 cm² of real surface area. The general value for C_s is between 20 μ F/cm² and 60 μ F/cm². Here we use 40 μ F/cm² as the average value (*Nat. Commun.* **2015**, *6*, 8668). Thus the ECSA for **CoPc-CP** with 50 wt% XC-72, **FePc-CP** with 50 wt% XC-72, and **Fe0.5Co0.5Pc-CP** with 50 wt% XC-72 can be obtained as 9.0 cm², 13 cm², and 12 cm², respectively.

Fig. S14 LSV curves of **CoPc-CP**-loaded electrode with loading amount of 50 wt% at different rotation speeds with the scan rate of 10 mV s⁻¹ in O₂-saturated 0.1 M KOH solution, Insert: Koutecky–Levich (K–L) plots at different potentials.

Fig. S15 LSV curves of **FePc-CP**-loaded electrode with loading amount of 50 wt% at different rotation speeds with the scan rate of 10 mV s⁻¹ in O₂-saturated 0.1 M KOH solution, Insert: Koutecky–Levich (K–L) plots at different potentials.

Fig. S16 Percentage of peroxide species (dotted solid lines) and the electron-transfer number (n) (solid lines) of (a) **CoPc-CP**- and (b) **FePc-CP**-loaded electrode with 50 wt% XC-72 in the potential range of 0.20-0.70 V (calculated from the corresponding RRDE data).

Fig. S17 XPS high resolution (a) Fe 2p, (b) Co 2p, and (c) N 1s spectra of Fe_{0.5}Co_{0.5}Pc-CP before and after i-t test.

Fig. S18 Amperometric i–t curves of **CoPc-CP** and **FePc-CP**-modified electrode tested with the rotation speed of 1600 rpm in O₂-saturated 0.1 M KOH solution.

Fig. S19 Current–time (I–t) curves of **CoPc-CP**, **FePc-CP**, and **Fe0.5Co0.5Pc-CP** electrode in the potential range of 570 and 930 mV with successive injection of 1 mM H₂O₂ into N₂-saturated 0.1 M KOH solution.

Fig. S20 LSV curves of Fe_{0.5}Co_{0.5}Pc-CP and Fe_{0.5}Co_{0.5}Pc-CP-2-modified electrode tested with the rotation speed of 1600 rpm in O₂-saturated 0.1 M KOH solution. Inset: Half-wave potential and onset potential comparisons of Fe_{0.5}Co_{0.5}Pc-CP and Fe_{0.5}Co_{0.5}Pc-CP-2.

Fig. S21 FT-IR spectra of **Fe0.5C00.5Pc-CP-2** as well as the corresponding phthalocyanine monomers in the region of 400-4000 cm⁻¹.

Fig. S22 Impedance curve of CoPc-CP, FePc-CP, and Fe0.5Co0.5Pc-CP with 50 wt% XC-72.

Sample	Catalyst loading [mg cm ⁻²]	E _{onset} ^a [mV]	$E_{1/2}^{b}$ [mV]	$ J_{\rm L} ^{\rm c}$ [mA cm ⁻²]	n ^d
CoPc-CP	0.08	907	716	4.40	3.49
FePc-CP	0.08	910	800	5.76	3.98
Fe0.5C00.5Pc-CP	0.08	937	848	5.98	3.97
Pt/C	0.08	951	823	6.14	3.96

Table S1. Summary of the electrochemical properties for the ORR catalysts.

^a Onset potential was acquired at an ORR current density of 0.1 mA cm^{-2} in a steady-state RDE experiment; ^b Half-wave potential; ^c Limiting current density was obtained at 0.2 V (vs RHE) with the rotation speed of 1600 rpm; ^d Electron transfer number was calculated at 0.5 V (vs RHE) from the corresponding RRDE data.