Supporting Information

One-step growth of nitrogen-decorated iron-nickel sulfide nanosheets for oxygen evolution reaction

Yanshuo Jin¹, Xin Yue¹, Hongyu Du¹, Kai Wang¹, Shangli Huang², Pei Kang Shen^{*,1,2}

 ¹ State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P.
R. China.

² Collaborative Innovation Center of Sustainable Energy Materials, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Processing for Non-ferrous Metal and Featured Materials, Guangxi University, Nanning 530004, P. R. China

AUTHOR INFORMATION

Corresponding Author

*pkshen@gxu.edu.cn; stsspk@mail.sysu.edu.cn

Experimental Section

Materials: Thiourea (CS(NH₂)₂, AR) and urea (CO(NH₂)₂, AR) were purchased from Tianjin Damao Chemical Reagent Factory. Sulfur (S, AR) was purchased from Aladdin Chemical Reagent Factory. Ni foams, NiFe alloy foams (Ni:85%; Fe:15%) and NiFe alloy foams (Ni:50%; Fe:50%) were purchased from Kunshan Jiayisheng Electronics Co., Ltd. Hydrochloric acid (HCl solution, 36-38%, AR) and potassium hydroxide (KOH, AR) were purchased from Guangzhou Chemical Reagent Factory. The deionized water was purified by the RO-DI system.

Synthesis of N-(Ni,Fe)₃S₂/NIF: 1 mmol thiourea was transferred into a corundum boat (60 mm×30 mm×15 mm). A piece of NiFe alloy foam (5.0 mm×2.0 mm×1.0 mm) after being cleaned by dilute HCl solution and deionized water was also transferred into the corundum boat. Then the corundum boat was transferred into a tube furnace. Annealing temperature is 300 °C for 1 hour. When cooled down to room temperature, N-(Ni,Fe)₃S₂/NIF was took out.

Synthesis of N-Ni₃S₂/NF: 1 mmol thiourea was transferred into a corundum boat (60 mm×30 mm×15 mm). A piece of Ni foam (5.0 mm×2.0 mm×1.0 mm) after being cleaned by dilute HCl solution and deionized water was also transferred into the corundum boat. Then the corundum boat was transferred into a tube furnace. Annealing temperature is 300 °C for 1 hour. When cooled down to room temperature, N-Ni₃S₂/NF was took out.

Synthesis of $H:N-(Ni,Fe)_3S_2/NIF$: 1 mmol sulfur and 1 mmol urea were transferred into a corundum boat (60 mm×30 mm×15 mm). A piece of NiFe alloy foam (5.0 mm×2.0 mm×1.0 mm) after being cleaned by dilute HCl solution and deionized water was also transferred into the corundum boat. Then the corundum boat was transferred into a tube furnace. Annealing temperature is 450 °C for 1 hour. When cooled down to room temperature, $H:N-(Ni,Fe)_3S_2/NIF$ was took out.

Synthesis of N-(Ni,Fe)S/NIF: 1 mmol sulfur and 1 mmol urea were transferred into a corundum boat (60 mm×30 mm×15 mm). A piece of NiFe alloy foam (5.0 mm×2.0 mm×1.0 mm) after being cleaned by dilute HCl solution and deionized water was also transferred into the corundum boat. Then the corundum boat was transferred into a tube furnace. Annealing temperature is 300°C for 1 hour. When cooled down to room temperature, N-(Ni,Fe)S/NIF was took out.

Synthesis of α -NiFeS/NIF: 1 mmol sulfur was transferred into a corundum boat (60 mm×30 mm×15 mm). A piece of NiFe alloy foam (5.0 mm×2.0 mm×1.0 mm) after being cleaned by dilute HCl solution and deionized water was also transferred into the corundum boat. Then the corundum boat was transferred into a tube furnace. Annealing temperature is 300°C for 1 hour. When cooled down to room temperature, α -NiFeS/NIF was took out.

*Synthesis of N-(Ni,Fe)*₉*S*₈/*NIF:* 1 mmol thiourea was transferred into a corundum boat (60 mm×30 mm×15 mm). A piece of NiFe alloy foam (5.0 mm×2.0 mm×1.0 mm, Ni:50%; Fe:50%) after being cleaned by dilute HCl solution and deionized water was also transferred into the corundum boat. Then the corundum boat was transferred into a tube furnace. Annealing temperature is 300 °C

for 1 hour. When cooled down to room temperature, N-(Ni,Fe)₃S₂/NIF was took out.

Characterizations: TG-IR data were acquired on a TG-209/VectorTM-22 combined instrument. SEM measurements were taken on a Quanta 400/INCA/HKL scanning electron microscope. XRD data were obtained on a D-MAX 2200 VPC diffractometer with Cu Ka radiation (λ =1.54056Å). TEM measurements were acquired on a JEM-2010HR electron microscopy. XPS measurements were carried out on an ESCALAB 250 spectroscopy.

Electrochemical measurements: Electrochemical measurements were tested on a Bio-logic VMP3 electrochemical analyzer. The OER electrochemical measurements were performed in a typical three-electrode device. The counter electrode is a graphite rod and the reference electrode is a reversible hydrogen electrode (RHE). Polarization curves at a scan rate of 1 mV s⁻¹ were measured in O₂-saturated 1 M KOH solution at 25 °C. The chronopotentiometric was used to test stability and the OER potential at a constant current density of 10 mA cm⁻². All of the potentials are iR-corrected.

Table S1. Comparisons of OER performance for various non-precious electrocatalysts in alkaline solution (η_{10} : overpotential at the current density of 10 mA cm⁻²).

Catalysts	η ₁₀ (mV)	Electrolyte	Ref.
N-(Ni,Fe) ₃ S ₂ /NIF	167	1 М КОН	This work
FeCoW oxyhydroxides	191	1 М КОН	Science 2016 , 352, 333.
W _{0.5} Co _{0.4} Fe _{0.1} /NF	250	1 М КОН	Angew. Chem. Int. Ed. 2017, 129, 4573.
FeCo/Co ₄ N	280	1 М КОН	Adv. Mater. 2017, 29, 1704091.
porous MoO ₂	260	1 М КОН	Adv. Mater. 2016, 28, 3785.
FeNiP-NP	180	1 М КОН	Adv. Mater. 2017, 29, 1704075.
NiSe ₂ nanosheets	330	1 М КОН	Adv. Mater. 2017, 29, 1701687.
Mn@Co _x Mn _{3-x} O ₄	246	1 М КОН	Adv. Mater. 2017, 29, 1701820.
Fe-Ni ₃ S ₂ /FeNi	282	1 M KOH	Small, 2017, 13, 1604161.
NiS	320	1 М КОН	ACS Energy Lett. 2016, 1, 195.

Figure S1. TG curve of thiourea during the annealing process in a nitrogen atmosphere.

Figure S2. IR curve of decomposition products of thiourea in a nitrogen atmosphere.

Figure S3. SEM images of N-(Ni,Fe)₃S₂/NIF.

Figure S4. SEM images of N-Ni₃S₂/NF

Figure S5. TEM images of N-(Ni,Fe)₃S₂.

Figure S6. TEM images of $N-Ni_3S_2$.

Figure S7. EDX elemetal mapping images of N-(Ni,Fe)₃S₂.

Figure S8. TG curve of urea during the annealing process in a nitrogen atmosphere.

Figure S9. SEM images of H:N-(Ni,Fe)₃S₂/NIF.

Figure S10. XRD pattern of H:N-(Ni,Fe)₃S₂/NIF.

Figure S11. TEM images of H:N-(Ni,Fe)₃S₂.

Figure S12. SEM images of N-(Ni,Fe)S/NIF.

Figure S13. XRD pattern of N-(Ni,Fe)S/NIF.

Figure S14. TEM images of N-(Ni,Fe)S.

Figure S15. SEM images of α -NiFeS/NIF.

Figure S16. TEM images of α -NiFeS.

Figure S17. Current density @ 1.43 V vs. RHE and Electrochemical capacitance of N-(Ni,Fe)₃S₂/NIF, N-(Ni,Fe)S/NIF and α -NiFeS/NIF.

Figure S18. XRD patterns of N-(Ni,Fe)₉S₈/NIF(Fe:50%).

Figure S19. Polarization curves with iR-corrected of N-Ni₃S₂/NF, N-(Ni,Fe)₃S₂/NIF(Fe:15%) and N-(Ni,Fe)₉S₈/NIF(Fe:50%) in 1M KOH solution at a scan rate of 1 mV s⁻¹ and 25 °C.

Figure S20. XRD pattern of N-(Ni,Fe)₃S₂/NIF after OER.

Figure S21. EDX elemetal mapping images of N-(Ni,Fe) $_3S_2$ after OER.