Ultra-long life Si@rGO/g-C₃N₄ with Multiple Synergetic Effect as Anode Materials for

Lithium-ion Batteries

Guanqin Wang, Zhongsheng Wen*, Yan-E Yang, Jinpeng Yin, Weiqiang Kong, Song Li, Juncai Sun, Shijun Ji

Department of Materials, Dalian Maritime University, Dalian 116026, China

The counting process:

As shown in **Table S1**, the weight percentage of C, N in the as-prepared Si@rGO/g-C₃N₄ hybrid is 37.442% and 11.521% respectively. Supposing that total amount of other trace elements (e.g. H, O) contained in synthesized Si@rGO/g-C₃N₄ is less than 1 wt%, the content of Si could be calculated as the following equation:

$$\omega_{Si} = 100\% - \omega_C - \omega_N \tag{Equation S1}$$

Where ω_{Si} , ω_C , ω_N are respectively the mass fraction of silicon, carbon and nitrogen. So the silicon mass fraction is 51.037% in hybrid.

The mass fraction of CN (ω_{CN}) could be calculated by

$$\omega_{CN} = \omega_N + \omega_N \times \frac{3M_C}{4M_N} = 1.643 \times \omega_N$$
(Equation S2)

The mass fraction of rGO (ω_{rGO}) could be calculated as follows:

$$\omega_{rGO} = \omega_C - \omega_N \times \frac{3M_C}{4M_N} = \omega_C - 0.643 \times \omega_N$$
(Equation S3)

So, the mass fractions of chemical compositions are calculated to be Si 51.037%, rGO 30.036% and CN 18.927% in Si@rGO/g-C₃N₄ hybrid, which are close to our estimated results.

	Elemental content(wt%)			Chemical compositions(wt%)		
Si@rGO/g-C ₃ N ₄	С	Ν	Si	rGO	CN	Si
	37.442	11.521	51.037	30.036	18.927	51.037

Table S2	Results of EIS,	σ and D in Si,	Si@rGO,	Si@rGO/g-C ₃ N ₄
----------	-----------------	-----------------------	---------	--

Active Material	$R_{S}[\Omega]$	$R_1[\Omega]$	W[Ω]	σ[S cm ⁻¹]	D[cm ² S ⁻¹]
Si@rGO/g-C ₃ N ₄	1.43	17.12	59.45	2.18 x 10 ⁻⁵	9.30 x 10 ⁻¹⁴
Si@rGO	1.60	42.03	124.30	1.01 x 10 ⁻⁵	5.12 x 10 ⁻¹⁴

Department of Materials, Dalian Maritime University, Dalian 116026, China.

Corresponding author, Zhongsheng Wen, *E-mail: <u>zswen5@gmail.com</u> Fax: +86-411-84725960.

Figure S1 Nitrogen adsorption-desorption isotherm and the inset displaying the corresponding pore-size distribution curve of $Si@rGO/g-C_3N_4$

Figure S2 a) Cyclic voltammetry curves with different scanning rate : 0.05, 0.1, 0.2, 0.5, 1.0 mV s⁻¹ and the relationship of the peak current (I_p) and the square root of scanning rate ($v^{0.5}$) of Si@rGO hybrid. b) Galvanostatic the charge-discharge curves of Si@rGO hybrid at 0.5 C. c) Nyquist plot of Si@rGO electrode

measured before cycling with selected equivalent circuit (inset), and d) Nyquist plot of the Si fresh electrode with selected equivalent circuit (inset).

Figure S3 SEM images of Si@rGO/g-C₃N₄ electrode after (a-b) 0 cycles, (c-d) 50 cycles and (e-f) 1000 cycles at 0.5C. b, d and f are SEM images of transverse section of the electrodes.

Figure S4 TEM images of Si@rGO/g-C₃N₄ after (a) 50 cycles and (b-c) 1000 cycles.

Figure S5 Rate performance of $Si@rGO/g-C_3N_4$ at various current rates.