Electronic Supplementary Information

Phonon Glass Behavior Beyond Traditional Cage Structures:

Synthesis, Crystal and Electronic Structure, and Properties of KMg₄Sb₃

Jian Wang,^{a,b} Lin-Lin Wang,^b Kirill Kovnir ^{a,b}*

^a Department of Chemistry, Iowa State University, Ames, IA 50011, United States ^b Ames Laboratory, U.S. Department of Energy, Ames, IA 50011, United States

Figure S1. Calculated and experimental powder X-ray diffraction patterns of KMg₄Sb₃.

Figure S2. The 19-vertex open "cage" around K atom in KMg₄Sb₃.

Table S1. Refined atomic coordinates and equivalent displacement parameters for KMg₄Sb₃ and A_2 Mg₅Sb₄ (A = Rb, Cs).

Table S2. Selected interatomic distances (Å) in for KMg_4Sb_3 and $A_2Mg_5Sb_4$ (A = Rb, Cs).

Figure S3. Temperature dependences of the total thermal conductivity for two samples of KMg₄Sb₃ with different densities.

Figure S1. Calculated and experimental powder X-ray diffraction patterns of KMg₄Sb₃. Holder scattering was substracted from the experimental pattern.

Figure S2. The nineteen-vertex open "cage" around K in KMg₄Sb₃. Large 8-memebred faces are visible. K: orange; Mg: blue; Sb: red.

Atoms	Wyckoff	x/a	y/b	z/c	s.o.f.	$U_{ m eq}({ m \AA}^2)^{a)}$		
KMg ₄ Sb ₃								
K1	4c	0	0.8245(1)	0.25	1	0.0149(3)		
Mg1	8 <i>f</i>	0	0.1799(1)	0.0555(1)	1	0.0081(3)		
Mg2	8 <i>f</i>	0	0.53559(1)	0.1277(1)	1	0.0083(3)		
Sb1	8 <i>f</i>	0	0.36512(2)	0.05436(2)	1	0.00625(9)		
Sb2	4c	0	0.08984(3)	1/4	1	0.0066(1)		
$\mathbf{Rb}_{2}\mathbf{Mg}_{5}\mathbf{Sb}_{4}$								
Rb1	8 <i>e</i>	0.21608(6)	0	0	1	0.0086(2)		
Mg1	8g	0.1395(2)	0.3734(4)	1/4	1	0.0069(6)		
Mg2	8 <i>f</i>	0	0.6388(4)	0.1121(2)	1	0.0061(6)		
Mg3	4c	0	0.0018(6)	1/4	1	0.0082(9)		
Sb1	8g	0.33990(4)	0.24637(7)	1/4	1	0.0048(2)		
Sb2	8 <i>f</i>	0	0.26512(7)	0.09321(4)	1	0.0048(2)		
$Cs_2Mg_5Sb_4$								
Cs1	8 <i>e</i>	0.22074(9)	0	0	1	0.0119(4)		
Mg1	8g	0.1396(5)	0.3758(8)	1⁄4	1	0.0114(14)		
Mg2	8 <i>f</i>	0	0.6448(8)	0.1116(5)	1	0.0118(14)		
Mg3	4c	0	0.006(1)	1⁄4	1	0.0135(19)		
Sb1	8g	0.34127(9)	0.249(2)	1/4	1	0.0089(4)		
Sb2	8 <i>f</i>	0	0.2698(2)	0.09476(9)	1	0.0095(4)		

Table S1. Refined atomic coordinates and isotropic displacement parameters for KMg_4Sb_3 and $A_2Mg_5Sb_4$ (A = Rb, Cs).

^{*a*} $U_{\rm eq}$ is defined as one third of the trace of the orthogonalized $U^{\rm ij}$ tensor

Atom pairs	Distances (Å)	Atom pairs	Distances (Å)
	KM	g ₄ Sb ₃	
$K1 - Sb1 \times 4$	3.530(1)	$Mg1-~Sb1{\times}2$	2.830(1)
Sb2	4.082(2)	Sb1	2.849(2)
Mg1 \times 2	4.021(2)	Sb2	2.911(2)
$Mg1 \times 4$	4.116(2)	Mg2-Sb1	2.793(2)
Mg2	4.309(2)	Sb1	2.842(2)
		Sb 2× 2	2.955(1)
	Rb ₂ N	Ig ₅ Sb ₄	
$Rb1 - Sb1 \times 2$	3.894(3)	Mg2–Sb1×2	2.885(3)
$Sb1 \times 2$	4.125(3)	Sb2	2.790(4)
Sb2× 2	3.705(2)	Sb2	2.930(4)
Mg1×2	3.902(3)	Mg3–Sb1×2	2.889(3)
Mg2 \times 2	4.129(3)	$Sb1 \times 2$	2.906(4)
Mg1–Sb1	2.797(4)		
Sb1	2.926(4)		
$Sb2 \times 2$	2.870(3)		
	Cs ₂ N	Ig ₅ Sb ₄	
$Cs1 - Sb1 \times 2$	3.933(1)	Mg2–Sb1×2	2.891(5)
$Sb1 \times 2$	4.152(1)	Sb2	2.812(7)
Sb2× 2	3.797(1)	Sb2	2.941(7)
Mg1×2	3.905(4)	Mg3–Sb1×2	2.894(7)
Mg2 \times 2	4.111(3)	$Sb1 \times 2$	2.913(7)
Mg1-Sb1	2.826(7)		
Sb1	2.929(7)		
Sb2× 2	2.875(5)		

Table S2. Selected interatomic distances (Å) in for KMg_4Sb_3 and $A_2Mg_5Sb_4$ (A = Rb, Cs).

Figure S3. Temperature dependences of the total thermal conductivity for two samples of KMg₄Sb₃ with different densities.