Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Nanoporous metal phosphide catalyst for bifunctional water splitting

Wence Xu,¹ Shengli Zhu,^{*,1,2,3} Yanqin Liang,^{1,2} Zhenduo Cui,¹ Xianjin Yang,^{1,2} Akihisa Inoue^{1,4}

¹ School of Materials Science and Engineering, Tianjin University, Tianjin, 300072,

China

² Tianjin Key Laboratory of Composite and Functional Materials, Tianjin, 300072,

China

³ Key Laboratory of Advanced Ceramics and Mchining Technology, Ministry of

Education, Tianjin, 300072, China

⁴ Department of Physics, Kings Abudulaziz University, 22254, Jeddah, Saudi Arabia

1. Material and methods

1.1 Preparation of the np- $(Ni_xFe_{1-x})_4P_5$ materials.

The np-(Ni_xFe_{1-x})₄P₅ materials were fabricated by electrochemical dealloying amorphous Ni_vFe_{80-v}P₂₀ (y=70, 65, 60) alloys. The amorphous Ni_vFe_{80-v}P₂₀ alloys were prepared by melt-spinning method ¹. Briefly, pure Ni, Fe, Fe₃P and Ni₂P with controlled proportion were melted into alloy ingots three times under argon atmosphere in a high frequency melting furnace. Then the alloy ingots were remelted in quartz tubes and ejected onto a Cu wheel rotating for rapid solidification to form the precursor alloys. The dealloying process was proceeded in a standard three electrode system with saturated calomel electrode (SCE) and platinum electrode as reference electrode and counter electrode, respectively. The as-prepared ribbons were cut into 40 mm \times 1 mm \times 25 μ m. Since the widths of all the part in the ribbon are almost the same (1 mm), we measured 0.5 cm as the working part and the part above the working part was wrapped by Teflon tape. The Teflon tape was pressed along the edge to make sure the electrolyte can not infiltrate into the Teflon tape. Hence the working area for the corrosion part of the two-sides ribbon is 0.1 cm². The precursor alloys were etched under 0.2 V vs SCE in 1 M HCl for 20000 s. After dealloying, the as-prepared samples were then washed in deionized water and ethyl alcohol in sequence then dried in vacuum oven at 30 °C for 12 h. For np-Ni₄P₅ sample, the fabrication process is similar to the np-(Ni_xFe_{1-x})₄P₅, the precursor alloy is Ni₇₀Mn₁₀P₂₀ alloy because it is hard to fabricate np-Ni₄P₅ from Ni-P precursor alloy due to the strong corrosion resistance for Ni-P amorphous alloy.

The crystalline np- $(Ni_{0.67}Fe_{0.33})_4P_5$ was prepared by annealing amorphous np- $(Ni_{0.67}Fe_{0.33})_4P_5$ at 450 °C for 5 min under an Ar atmosphere.

1.2 Characterization.

Field emission scanning electron microscopy (FESEM, Hitachi S-4800) and Transmission Electron Microscope (TEM, JEOL) were used to characterize the morphologies of the as-prepared materials. X-ray diffraction (XRD) patterns were recorded by Bruker D8 instrument with a Cu K α radiation source. X-ray photoelectron spectroscopy was performed on PHL1600ESCA. Crystallization behaviors were studied by differential scanning calorimetry (DSC; Perkin Elmer DSC 7, Norwalk, CT) from 50 degrees to 600 degrees at a heating rate of 40 K min⁻¹.

1.3 Electrochemical measurement.

Electrochemical measurements were performed on an electrochemical workstation (Gamry Interface 1000). A typical three electrode system was used in 1 M KOH aqueous solution. The reference electrode and counter electrode were the SCE and carbon rod, respectively. Commercial Pt/C and Ir/C catalysts powder were used as control group. The ink of these catalysts were typically made by dispersing 4 mg catalyst in 1000 μ L water/ethanol mixture with a volume ratio of 4:1. Then 80 μ L of 5 wt.% of Nafion solution was added to the ink and mixed under ultrasonication. 50 μ L ink was pipetted onto the glassy carbon electrode (GCE, 0.2826 cm⁻²). Then the as-prepared electrode was dried in vacuum oven at 30 °C for 5 h. Due to the as-prepared samples maintain the shape of the original precursor alloy, they can be used directly as the working electrode. For the np-(Ni_xFe_{1-x})₄P₅ materials, the corrosion part

of the ribbons were used as the testing part, the area of the testing parts were 0.1 cm². The 10th cycle of the polarization curves were used to compare the electrocatalytic activity for each sample. All the potentials were calculated to the reversible hydrogen electrode (RHE) according to the equation (1):

$$E_{(RHE)} = E_{(SCE)} + 0.2412 + 0.059 \text{ pH}$$
(1)

Before measurement, the electrolyte was degassed by bubbling nitrogen gas for 30 min. The scan rate of the polarization measurement was 2 mV s⁻¹, and the test temperature was 25 °C. The polarization curve was *iR*-compensated according to the following equation:

$$E_{corr} = E_{mea} - iR_s \tag{2}$$

Where E_{corr} is the *iR*-compensated potential, E_{mea} is the measured potential, *i* is the current and R_s is the equivalent series resistance measured by electrochemical impedance spectroscopy (EIS).

Electrochemical active surface measurements were performed by measuring double-layer capacitance (C_{dl}) from the CV curves from 0.97 V to 1.07 V vs RHE at different scan rates. By plotting the $\Delta J = (J_f - J_r)$ at 1.02 V vs RHE against the scan rate, the linear slope that is twice the C_{dl} can be obtained, and is normally used to represent the corresponding ECSA, and assuming a specific capacitance of 40 μ F cm⁻² for a flat surface in according to previous literatures ², ³. EIS measurements were carried out at an overpotential of 300 mV and 200 mV for OER and HER, respectively, in the frequency range from 100000 Hz to 0.01 Hz at a perturbation AC voltage of 10 mV. For the aging process, CV measurement with a scan rate of 5 mV s⁻

¹ was proceeded. The stability measurements were carried under static current density of -10 mA cm⁻² and 10 mA cm⁻² for HER and OER, respectively. For the overall water splitting measurements, the electrodes were served as both anode and cathode. The scan rate of the polarization curve was 2 mV s⁻¹. The chronoamperometry stability measurement was carried out under 10 mA cm⁻² for 20 h.

Figure S1. SEM images and EDX spectra (inset) of the np-Ni₄P₅ (a) np- $(Ni_{0.75}Fe_{0.25})_4P_5$ (b), np- $(Ni_{0.67}Fe_{0.33})_4P_5$ (c) and np- $(Ni_{0.5}Fe_{0.5})_4P_5$ (d).

Figure S2 . Polarization curves of the np-(Ni_{0.67}Fe_{0.33})_4P_5 and corresponding precursor alloy.

Figure S3. SEM image (a) and XRD pattern (b) of the np-(Ni_{0.67}Fe_{0.33})_4P_5 after annealing.

Figure S4. Polarization curves of the amorphous and crystalline np- $(Ni_{0.67}Fe_{0.33})_4P_5$ for OER (a) and HER (b). CV curves of the amorphous (c) and crystalline (d) np- $(Ni_{0.67}Fe_{0.33})_4P_5$ at different scan rate. (e) Corresponding plots showing the extraction of the double layer capacitance for amorphous and crystalline np- $(Ni_{0.67}Fe_{0.33})_4P_5$.

Figure S5. EIS curves of the np- $(Ni_yFe_{1-y})_4P_5$ for OER.

Figure S6. EIS curves of the np- $(Ni_yFe_{1-y})_4P_5$ for HER.

Figure S7. CV curves and corresponding plots showing the extraction of the double layer capacitance for $np-(Ni_yFe_{1-y})_4P_5$.

Figure S8. Polarization curves normalized by ECSA of the np- $(Ni_yFe_{1-y})_4P_5$ for OER (a) and HER (b).

Figure S9. Ni 2p (a), Fe 2p (b) and P 2p (c) spectra of the fresh and aged np- $(Ni_{0.67}Fe_{0.33})_4P_5.$

Figure S10. Ni 2p (a), Fe 2p (b) and P 2p (c) spectra of the np- $(Ni_yFe_{1-y})_4P_5$.

Figure S11. Chronoamperometry curves of the np-($Ni_{0.67}Fe_{0.33}$)₄P₅ for HER and OER.

Figure S12. XRD pattern of the fresh, post-HER and post-HER np- $(Ni_{0.67}Fe_{0.33})_4P_5$.

Figure S13. SEM images of the post-HER (a) and post-OER (b) np-(Ni_{0.67}Fe_{0.33})_4P_5.

Sample	Ni (%)	Fe (%)	P (%)	Precursor	
				alloy	
np-Ni ₄ P ₅	40.33	-	59.67	Ni ₇₀ Mn ₁₀ P ₂₀	
$np-(Ni_{0.75}Fe_{0.25})_4P_5$	31.48	12.87	55.65	$Ni_{70}Fe_{10}P_{20}$	
$np-(Ni_{0.67}Fe_{0.33})_4P_5$	29.99	16.99	53.02	$Ni_{65}Fe_{15}P_{20}$	
$np-(Ni_{0.5}Fe_{0.5})_4P_5$	22.60	23.97	53.44	Ni ₆₀ Fe ₂₀ P ₂₀	

Table S1. Detailed composition of the as-prepared samples

Catalyst	Electrolyte	η ₁₀ (mV)	Tafel slope (mV dec ⁻¹)	Substrate	Reference	
NiFeP	1 M KOH	277	83	NiFe	4	
NJEA I DU		220	40	glassy	5	
INII'C-LDII		230	42	carbon		
NiFe-LDH	1 М КОН		86	exfoliated	6	
	1 M Rom		00	graphene		
NiFeOx	1 M KOH	260	40	Nickel	7	
	1 1 1 1 1 0 1 1	••••	40	foam	0	
NiFeOOH	I M KOH	280	40	gold	0	
NiFe LDH	1 M KOH		40	glassy	9	
				carbon		
NiFeOx	1 M KOH			glassy	10	
Fe-Ni ₂ S ₂ /FeNi	1 M KOH	282	54	NiFe	11	
1 0-101302/1 0101	$0.1 \mathrm{M}$	202	54	olassy		
Ni ₃ FeN/NRGO	КОН	400	-	carbon	12	
				glassy	12	
NiFe@NC	1 M KOH	350	56	carbon	13	
		200	16	glassy	14	
M ₁₃ Fen-MPS	I M KOH	280	46	carbon	17	
Ni Fo /NC		220	15	glassy	15	
$1 \sqrt{1 - x^2} C_x / 1 \sqrt{2}$		330	43	carbon		
Ni-Fe-P	1 М КОН	271	53	glassy	16	
		271	55	carbon		
$Ni_{1.85}Fe_{0.15}P$	1 M KOH	270	96	Nickel	17	
NSAs/NF		_, ,		foam		
	1 1 1 1 1 0 1 1	071	40	Carbon	19	
NiFe-NC	I M KOH	271	48	fiber	18	
				paper		
Ni-Fe LDHs	1 M KOH	239	-	giassy	19	
				Carbon	This	
np-Ni ₄ P ₅	1 M KOH	362	40.9	-	work	
					This	
np- $(Ni_{0.75}Fe_{0.25})_4P_5$	1 M KOH	280	33.7	-	work	
	1 1 1 12011	245	22.0		This	
np- $(N_{0.67} + e_{0.33})_4 P_5$	і м кон	245	32.9	-	work	
nn (Ni, Eq.) D		210	27 5		This	
mp-(mi0.5re0.5)4r5		510	57.5	-	work	

Table S2. Summary of the electrocatalytic properties of as-prepared catalysts and other recently reported Ni, Fe based high performance OER catalysts in KOH.

Catalyst	Electrolyte	η_{10} (mV)	Tafel slope (mV dec ⁻¹)	Substrate	Reference
Fe–NiS ₂	0.5 M H ₂ SO ₄	121	37	glassy carbon	20
FeCo@NCNTs	0.1 M H ₂ SO ₄	~300	72	glassy carbon	21
Ni _{1.5} Fe _{0.5} P	1 M KOH	282	125	Carbon fiber	22
Ni _{1.5} Fe _{0.5} P/CF	1 M KOH	158	-	paper Carbon fiber paper	22
NiFe@NC	1 M KOH	~240	-	glassy carbon	13
Ni ₃ FeN-NPs	1 M KOH	158	42	glassy carbon	14
Ni _{1-x} Fe _x /NC	1 M KOH	219	101	glassy carbon	15
NiFeS/NF	1 M KOH	180	53	Nickel foam	23
Ni-Fe-P	1 M KOH	182	85	glassy carbon	16
Ni _{1.85} Fe _{0.15} P NSAs/NF	1 M KOH	106	89.7	Nickel foam	17
NiFe-NC	1 M KOH	197	130	Carbon fiber paper	18
np-Ni ₄ P ₅	1 M KOH	278	109.4	-	This
np-(Ni _{0.75} Fe _{0.25}) ₄ P ₅	1 M KOH	157	66.5	-	work This work
np- $(Ni_{0.67}Fe_{0.33})_4P_5$	1 M KOH	120	41.8	-	This work
$np-(Ni_{0.5}Fe_{0.5})_4P_5$	1 M KOH	198	86.2	-	This work

 Table S3. Summary of the electrocatalytic properties of as-prepared catalysts and other recently reported Ni, Fe based high performance HER catalysts in KOH.

		I ⁻ (⁻ y ⁻ I-y) 4 J		
Sample	$R_{S}(\Omega)$	CPE	n	$R_{CT}(\Omega)$
np-(Ni _{0.75} Fe _{0.25}) ₄ P ₅	5.289	0.01536	0.8786	0.88764
	(0.09939%) ^a	(3.9332%)	(0.73131%)	(0.47657%)
np-(Ni _{0.67} Fe _{0.33}) ₄ P ₅	5.312	0.00988	0.84052	0.7493
	(0.08577%)	(3.5312%)	(0.75438%)	(0.49258%)
$np-(Ni_{0.5}Fe_{0.5})_4P_5$	5.291	0.00349	0.88799	0.99197
	(0.07755%)	(3.1985%)	(0.67652%)	(0.43651%)
np-Ni ₄ P ₅	5.277	6.36E-04	0.90125	2.879
	(0.09082%)	(3.3731%)	(0.78181%)	(0.51572%)

Table S4. Fitting parameters of the np-(Ni_yFe_{1-y})₄P₅ for OER.

^a The values in the round brackets are the fitting errors.

		F (y = 1-y)+ J =	-	
Sample	$R_{S}(\Omega)$	CPE	n	$R_{CT}(\Omega)$
$np-(Ni_{0.75}Fe_{0.25})_4P_5$	5.298	9.11E-04	0.87793	3.356
	(0.08923%) ^a	(2.9792%)	(0.63132%)	(0.49659%)
np-(Ni _{0.67} Fe _{0.33}) ₄ P ₅	5.304	7.28E-04	0.89012	2.078
	(0.09636%)	(3.3732%)	(0.77431%)	(0.43527%)
$np-(Ni_{0.5}Fe_{0.5})_4P_5$	5.287	0.00116	0.86032	7.481
	(0.08163%)	(3.1398%)	(0.72231%)	(0.42658%)
np-Ni ₄ P ₅	5.281	0.00127	0.85469	28.89
	(0.09379%)	(3.6338%)	(0.73831%)	(0.47935%)

Table S5. Fitting parameters of the np- $(Ni_vFe_{1-v})_4P_5$ for HER.

^a The values in the round brackets are the fitting errors.

Catalyst	Electrolyte	$\eta_{10} \left(mV \right)$	Substrate	Reference	
NiFe@NC	1 M KOH	580	glassy carbon	13	
NiFe HNSs	1 M KOH	440	glassy carbon	24	
N. E. D/CE		250	Carbon fiber	22	
$N1_{1.5}Fe_{0.5}P/CF$	I M KOH	339	paper		
NiFe/NiCo ₂ O ₄ /Ni	1 M KOH	440	Nickel foam	25	
FeNi ₃ N/NF	1 M KOH	390	Nickel foam	26	
Ni _{1-x} Fe _x /NC	1 M KOH	410	glassy carbon	15	
Ni-Fe-P	1 M KOH	440	glassy carbon	16	
Ni _{1.85} Fe _{0.15} P NSAs/NF	1 M KOH	380	Nickel foam	17	
	1 1 1 1 1 0 1 1	4.40	Carbon fiber	18	
N1Fe-NC	I M KOH	440	paper	10	
np-(Ni _{0.67} Fe _{0.33}) ₄ P ₅	1 M KOH	390	-	This work	

Table S6. Summary of the electrocatalytic properties of as-prepared catalysts and other recently reported Ni, Fe based high performance bifunctional catalysts in KOH.

Reference

- 1. S. L. Zhu, J. L. He, X. J. Yang, Z. D. Cui and L. L. Pi, *Electrochem. Commun.*, 2011, **13**, 250.
- X. Zhang, X. Zhang, H. Xu, Z. Wu, H. Wang and Y. Liang, *Adv. Funct. Mater.* 2017, 27, 1606635.
- 3. C. C. L. McCrory, S. Jung, I. M. Ferrer, S. M. Chatman, J. C. Peters and T. F. Jaramillo, *J. Am. Chem. Soc.*, 2015, **137**, 4347.
- 4. C. G. Read, J. F. Callejas, C. F. Holder and R. E. Schaak, ACS Appl. Mat. Interfaces, 2016, 8, 12798.
- 5. W. Ma, R. Ma, C. Wang, J. Liang, X. Liu, K. Zhou and T. Sasaki, *ACS Nano*, 2015, **9**, 1977.
- 6. Y. Hou, M. R. Lohe, J. Zhang, S. Liu, X. Zhuang and X. Feng, *Energy Environ. Sci.*, 2016, 9, 478.
- 7. E. Nurlaela, T. Shinagawa, M. Qureshi, D. S. Dhawale and K. Takanabe, *ACS Catal.*, 2016, **6**, 1713.
- 8. M. W. Louie and A. T. Bell, J. Am. Chem. Soc., 2013, 135, 12329.
- 9. F. Song and X. Hu, Nat. Commun., 2014, 5, 4477.
- 10. C. C. L. McCrory, S. Jung, J. C. Peters and T. F. Jaramillo, *J. Am. Chem. Soc.*, 2013, **135**, 16977.
- 11. C.-Z. Yuan, Z.-T. Sun, Y.-F. Jiang, Z.-K. Yang, N. Jiang, Z.-W. Zhao, U. Y. Qazi, W.-H. Zhang and A.-W. Xu, *Small*, 2017, **13**, 1604161.
- 12. Y. Fan, S. Ida, A. Staykov, T. Akbay, H. Hagiwara, J. Matsuda, K. Kaneko and T. Ishihara, *Small*, 2017, **13**, 1700099.
- 13. Z. Zhang, Y. Qin, M. Dou, J. Ji and F. Wang, *Nano Energy*, 2016, **30**, 426.
- X. Jia, Y. Zhao, G. Chen, L. Shang, R. Shi, X. Kang, G. I. N. Waterhouse, L.-Z. Wu, C.-H. Tung and T. Zhang, *Adv. Energy. Mater.*, 2016, 6, 1502585.

- 15. X. Zhang, H. Xu, X. Li, Y. Li, T. Yang and Y. Liang, ACS Catal., 2016, 6, 580.
- C. Xuan, J. Wang, W. Xia, Z. Peng, Z. Wu, W. Lei, K. Xia, H. L. Xin and D. Wang, ACS Appl. Mat. Interfaces, 2017, 9, 26134-26142.
- P. Wang, Z. Pu, Y. Li, L. Wu, Z. Tu, M. Jiang, Z. Kou, I. S. Arniinu and S. Mu, ACS Appl. Mat. Interfaces, 2017, 9, 26001-26007.
- 18. A. Kumar and S. Bhattacharyya, *ACS Appl. Mat. Interfaces*, 2017, **9**, 41906-41915.
- K. Zhang, W. Wang, L. Kuai and B. Geng, *Electrochim. Acta*, 2017, 225, 303-309.
- 20. J. Yan, H. Wu, P. Li, H. Chen, R. Jiang and S. Liu, *J. Mater. Chem. A*, 2017, **5**, 10173.
- 21. J. Deng, P. Ren, D. Deng, L. Yu, F. Yang and X. Bao, *Energy Environ. Sci.*, 2014, **7**, 1919.
- 22. H. Huang, C. Yu, C. Zhao, X. Han, J. Yang, Z. Liu, S. Li, M. Zhang and J. Qiu, *Nano Energy*, 2017, **34**, 472.
- 23. P. Ganesan, A. Sivanantham and S. Shanmugam, J. Mater. Chem. A, 2016, 4, 16394.
- 24. X. Sun, Q. Shao, Y. Pi, J. Guo and X. Huang, J. Mater. Chem. A, 2017, 5, 7769.
- 25. C. Xiao, Y. Li, X. Lu and C. Zhao, Adv. Funct. Mater. 2016, 26, 3515.
- 26. B. Zhang, C. Xiao, S. Xie, J. Liang, X. Chen and Y. Tang, *Chem. Mater.*, 2016, **28**, 6934.