Electronic Supplementary Information

Ultrafast Synthesis of Amorphous VO_x embedded into 3D Strutted Amorphous Carbon Frameworks—Short-Range Order in Dual-Amorphous Composites Boosts Lithium Storage

Haoyang Wu^a, Mingli Qin^{*}a, Wei Wang ^{*}b, Zhiqin Cao^c, Zhiwei Liu^a, Qiyao Yu^d, Chengyen Lao^b, Deyin Zhang ^a, Baorui Jia^a, Donglin He^a, Tingting Liu^a, Alex A. Volinsky^e, Peng Cao^f, Xuanhui Qu^a

^a. Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083,

China. *E-mail: qinml@mater.ustb.edu.cn

^bDepartment of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK. *Email: wwang bj@126.com

^c. School of Resources and Environmental Engineering, Panzhihua University, Panzhihua 617000, China.

^d Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001, China.

^e.Department of Mechanical Engineering, University of South Florida, E. Fowler Ave., ENB118, Tampa FL 33620, USA.

^fDepartment of Chemical and Materials Engineering, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.

Figure S1. SEM image of the $VO_x/0.2C-400$.

Figure S3. N1s XPS spectra of the $VO_x/0.2C$ samples.

Figure S4. V2p XPS spectra of the four samples: (a) $VO_x/0.2C$, (b) $VO_x/0.1C$, (c) $VO_x/1C$ and (d) $VO_x/0.2C$ -400.

Figure S6. (a) CV curves recorded at 0.5 mV s⁻¹ in the range of 0.01 to 3 V versus Li/Li⁺ and (b) the corresponding charge/discharge profiles at 100 mA g⁻¹ of VO_x/0.1C sample.

Figure S7. (a) CV curves recorded at 0.5 mV s⁻¹in the range of 0.01 to 3 V versus Li/Li⁺ and (b) the corresponding charge/discharge profiles at 100 mA g⁻¹ of VO_x/1C sample.

Figure S8. (a) CV curves recorded at 0.5 mV s⁻¹in the range of 0.01 to 3 V versus Li/Li⁺ and (b) the corresponding charge/discharge profiles at 100 mA g⁻¹ of VO_x/0.2C-400 sample.

Figure S9. Nyquist plots of all the samples at fresh coin cells over the frequency range from 100 kHz to 0.01 Hz.

Figure S10. Charge/discharge profiles of the $VO_x/0.2C$ performed at 1 A g⁻¹.

Figure S11. (a) The XRD patterns of the pyrolytic carbon, (b) Cycling performance of the pyrolytic carbon performed at a current density of 1 A g⁻¹.

Figure S12. The V 2p XPS spectra of the lithiated and delithiated (a) $VO_x/0.2C$ and (b) $VO_x/0.2C$ -400 samples.

Figure S13. SEM image of the $VO_x/0.2C$ after 400 cycles at a current density of 1 A g⁻¹.

Figure S14. Electrochemical performance of $VO_x/0.2C$ anode material compared with other vanadium oxide materials in previous works.

Table S1. Carbon content in three as-synthesized samples.

Sample	VO _x /0.1C	VO _x /0.2C	VO _x /1C
C (wt%)	7	14	30