Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

## Supplementary Information

## Cobalt-doped Zn<sub>2</sub>GeO<sub>4</sub> Nanorods Assembled into Hollow Spheres as High-Performance Anode

#### **Materials for Lithium-Ion Batteries**

Jiaxue Lu, Deli Li, Li Li, \* Yao Chai, Meng Li, Shun Yang, and Jun Liang \*

State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering,

College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.

[\*] Jiaxue Lu, [+] Deli Li, [+] Yao Chai, Meng Li, Li Li,\* Min Luo, and Jun Liang\*

E-mail: Junliang@nxu.edu.cn; li\_l@nxu.edu.cn.

[+] These authors contributed equally to this work.



Fig. S1 The XRD patterns of the as-prepared  $Zn_2GeO_4$  and Co-doped  $Zn_2GeO_4$  products.



Fig. S2 Magnified (220) and (410) peaks from the powder XRD date of pure  $Zn_2GeO_4$ and Co-doped  $Zn_2GeO_4$  samples.



Fig. S3 The FESEM images of ZG (a), CZG-1 (b), CZG-2 (c) and CZG-3 (d) hollow microspheres obtained.



Fig. S4 Color of the obtained products with different amount of Co doped, ZG (no Co

doped), CZG-1 (5% Co doped), CZG-2 (10% Co doped) and CZG-3 (20% Co doped).



Fig.S5 FESEM images of the products obtained with different amount of TEOA (a) 0 g,

(b) 3.0 g, (c) 4.0 g.



**Fig. S6** The 1<sup>st</sup> five cycles of the cyclic voltamogram for ZG (a), CZG-1 (b), CZG-2 (c) and CZG-3 (d).



**Fig. S7** Galvanostatic charge-discharge profiles of ZG (a), CZG-1 (b), CZG-2 (c), CZG-3 (d) for selected cycles at a current density of 1.0 A g<sup>-1</sup> with the potential window from 0.01 V to 3.0 V. The initial Coulombic Efficiency is 63%, 74%, 75%, 69% for ZG, CZG-1, CZG-2 and CZG-3, respectively.

| Samples | Initial<br>capacity/ mA h<br>g <sup>-1</sup> | Capacity after 100<br>cycles/ mA h g <sup>-1</sup> | Capacity retention | Co <sup>2+</sup><br>concentration |
|---------|----------------------------------------------|----------------------------------------------------|--------------------|-----------------------------------|
| ZG      | 698                                          | 496                                                | 71%                | 0                                 |
| CZG-1   | 886                                          | 772                                                | 87%                | 5%                                |
| CZG-2   | 1419                                         | 882                                                | 62%                | 10%                               |
| CZG-3   | 1091                                         | 471                                                | 43%                | 20%                               |

**Table S1** Capacity retention after 100 charge/discharge cycles of the four samples with different  $Co^{2+}$  doped concentration at a current density of 1.0 A g<sup>-1</sup>

| Samples                                                                                       | Current<br>density<br>(mAh g <sup>-1</sup> ) | Cycle<br>number | Capacity<br>(mAh g <sup>-1</sup> ) | Ref.      |
|-----------------------------------------------------------------------------------------------|----------------------------------------------|-----------------|------------------------------------|-----------|
| Zn <sub>2</sub> GeO <sub>4</sub> with fascicular structure                                    | 500                                          | 160             | 1034                               | 1         |
| ZnO@amorphous Zn <sub>2</sub> GeO <sub>4</sub><br>core—shell hierarchical<br>structure        | 500                                          | 250             | 905                                | 2         |
| Cobalt-doped Zn <sub>2</sub> GeO <sub>4</sub><br>nanorods<br>assembled into hollow<br>spheres | 1000                                         | 100             | 882                                | This work |
| anchored with amorphous carbon                                                                | 2000                                         | 72              | 820                                | 3         |
| Zn₂GeO₄@carbon nanowires<br>grown on Cu foils (with a 2 h<br>reaction time)                   | 2000                                         | 100             | 790                                | 4         |

# Table S2 Comparison of the rate and cycling performance of Co-doped Zn2GeO4(CZG-2) in this work with those of bare Zn2GeO4 and Zn2GeO4-based anodesmaterials with different morphology

\*Some of the information was not specified in the literature and was estimated according to the data graphs.

## References

[1] W. Liu, T. F. Zhou, Y. Zheng, J. W. Liu, C. Q. Feng, Y. Shen, Y. H. Huang and Z. P. Guo, Hierarchical structural evolution of  $Zn_2GeO_4$  in binary solvent and its effect on li-ion storage performance, *ACS Appl. Mater. Interfaces*, 2017, **9**, 9778-9784.

[2] M. Jiang, T. F. Zhou, W. Liu, C. Q. Feng, J. W. Liu and Z. P. Guo, Graphene aerogel supported crystalline ZnO@amorphous  $Zn_2GeO_4$  core—shell hierarchical structure for lithium storage, *RSC Adv.*, 2017, **7**, 17769-17772.

[3] H. H. Li, L. Zhang, C. Y. Fan, X. L. Wu, H. F. Wang, X. Y. Li, K. Wang, H. Z. Sun and J. P. Zhang, Flexible paper electrode constructed of  $Zn_2GeO_4$  nanofibers anchored with amorphous carbon for advanced lithium ion batteries, *J. Mater. Chem. A*, 2016, **4**, 2055-2059.

[4] F. Zou, X. L. Hu, Y. M. Sun, W. Luo, F. F. Xia, L. Qie, Y. Jiang and Y. H. Huang, Microwaveinduced in situ synthesis of Zn<sub>2</sub>GeO<sub>4</sub>/N-doped graphene nanocomposites and their lithiumstorage properties, *Chem. Eur. J.*, 2013, **19**, 6027-6033.