Supporting Information

Micron-sized encapsulated-type MoS₂/C hybrid particulates with effective confinement effect for improving cycling performance of LIB anodes

Boya Sun, Qinglei Liu*, Wenshu Chen, Ning Wang, Jiajun Gu, Wang Zhang, Huilan Su, and Di

Zhang*

State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800

Dongchuan Road, Shanghai 200240, P. R. China

* liuqinglei@sjtu.edu.cn; zhangdi@sjtu.edu.cn

Figure S1. Digital photographs of cross-linked Mo/SA gels and freeze-dried globules.

Figure S2. SEM image of Mo/SA gel globules after freeze-dring. Scar bar is 1 μ m (500 nm for inset image).

Figure S3. TG curve of Mo/SA gels acquired under a heating rate of 10 °C min⁻¹ in Ar atmosphere.

Figure S4. (a) XRD profiles and (b-e) TEM images of the as-synthesized nanocomposites carbonized at 600 °C (b), 700 °C (c), 800 °C (d), and 900 °C (e), respectively, before sulfurization. The sizes of particles in carbonized samples are 3, 5, 10, and 15 nm, respectively. Scale bars are 100 nm.

Figure S5. SEM image of Mo₂C/C hybrids after carbonization at 900 °C. Scar bar is 1 μ m (200 nm for inset image).

Figure S6. XRD profiles of samples obtained after rapid sulfurization at 600 °C and they are labeled as C600S600, C700S600, C800S600 and C900S600, respectively. For the sulfurized samples, the diffraction peaks of MoO₂ gradually disappear with the increase of initial carbonization temperature. Pure hexagonal MoS₂ phase is obtained in the C900S600 sample (MoS₂/C).

Figure S7. XPS spectra of Mo₂C/C and MoS₂/C hybrids.

Figure S8. TG curve of MoS₂/C hybrids recorded with a temperature ramp of 10 °C min⁻¹ under air atmosphere. The weight loss at about 400 °C comes from the oxidation of MoS₂ to MoO₃. The weight content of MoS₂ in composite is calculated to be 85.6 %.

	\mathbf{S}_{BET}	S _{mi}	S _{me}	V _t	V _{mi}	V _{me}
	$(m^2 g^{-1})$	$(m^2 g^{-1})$	$(m^2 g^{-1})$	(cm ³ g ⁻¹)	$(cm^3 g^{-1})$	$(cm^3 g^{-1})$
Mo ₂ C/C	361.73	192.16	169.57	0.31	0.09	0.22
MoS ₂ /C	430.72	266.96	163.76	0.38	0.12	0.26

Table S1. Details of the porous structure characteristics of Mo_2C/C and MoS_2/C hybrids.

 S_{mi} , specific surface area of the micropores; S_{me} , specific surface area of the mesopores; V_t , total pore volume; V_{mi} , pore volume of micropores; V_{me} , pore volume of mesopores.

Figure S9. Galvanostatic charge/discharge profiles of (a) C600S600, (b) C700S600, (c) C800S600, and (d) C900S600 (i.e. MoS₂/C) samples during initial three cycles.

		First discharge	First charge	Capacity after		Current	Rate capability	
		capacity	capacity	(n) cycles	Coulombic	density	(mAh g-1) at (X)	
Material	Synthesis method	(mAh g ⁻¹)	(mAh g ⁻¹)	$(mAh g^{-1})$	efficiency %	(mAh g ⁻¹)	current density	Ref.
MoS ₂ /C	Thermal reaction	1873	1222	1300 (100)	97.2	100	929 (1000 mA g ⁻¹)	this work
				1250 (480)	98.5	1000		
MoS ₂ -amC	Solvethermal	1062	917	907 (50)	98*	1062	700 (53.1 A g ⁻¹)	1
MoS ₂ -graphene	Hydrothermal	1571	1031	1187 (100)		100	~900 (1000 mA g ⁻¹)	2
MoS ₂ -rGO	Exfoliation	1240		890 (100)		100	600 (1000 mA g ⁻¹)	3
MoS ₂ -rGO	Hydrothermal	1367	912	808 (100)		100	571 (1000 mA g ⁻¹)	4
MoS ₂ -rGO	Hydrothermal	1426	934	1020 (100)		100	760 (1000 mA g ⁻¹)	5
MoS ₂ -3D graphene	CVD and thermal	1222	1020	877 (50)		100	597 (1000 mA g ⁻¹)	6
	decomposition							
MoS ₂ -rGO	Exfoliation	971	658	915 (700)	>97	500	339 (20 A g ⁻¹)	7
MoS ₂ -rGO	Hydrothermal	1653	1176	1183 (100)	~100	100	901 (1000 mA g ⁻¹)	8
MoS ₂ -rGO	Hydrothermal	1592	1036	1063 (100)	100	100	732-718 (1000 mA g ⁻¹)	9
MoS ₂ -rGO	Exfoliation	1560	1220	1216 (30)		74	711 (1860 mA g ⁻¹)	10
MoS ₂ -graphene	Hydrothermal	936	820	1100 (50)	>99	1000	820 (10 A g ⁻¹)	11
MoS ₂ -graphene	Exfoliation	1780	1399	1351 (200)		100	591 (1000 mA g ⁻¹)	12
MoS ₂ -C sheets	Thermal reaction	1654	1161	~1127 (200)	~100	100	250 (10 A g ⁻¹)	13
MoS ₂ -SiO ₂ -graphene	Hydrothermal	1266	1019	1060 (100)		100	580 (8 A g ⁻¹)	14
MoS2@GF/CNT	Hydrothermal	1568	1252	1112 (120)	81.3	200	823 (5 A g ⁻¹)	15
MoS ₂ -graphene	Hydrothermal	1521	1110	1150 (60)		100	890 (1000 mA g ⁻¹)	16
MoS ₂ -CNT	Microwave	1280	790	927* (80)	96*	500	670 (1600 mA g ⁻¹)	17
MoS ₂ -3D graphene	Hydrothermal	1405.9	1022.3	997 (700)	~100	2000	688 (8 A g ⁻¹)	18

Table S2. Summary of LIB properties for MoS₂ based electrodes.

		First discharge	First charge	Capacity after		Current	Rate capability (mAh	
		capacity	capacity	(n) cycles	Coulombic	density	g-1) at (X) current	
Material	Synthesis method	(mAh g ⁻¹)	(mAh g ⁻¹)	(mAh g ⁻¹)	efficiency %	(mAh g ⁻¹)	density	Ref.
MoS ₂ -PPY-rGO	Wet reaction	1428	1085	1070 (400)	~100	200	~600 (2 A g ⁻¹)	19
MoS ₂ -graphene	Thermal reaction	1000	750	~1040 (120)	>97	100	460 (5 A g ⁻¹)	20
MoS ₂ /graphene	Hydrothermal	1160	896	1077 (150)	_	100	890 (1000 mA g ⁻¹)	21

*-indicates a value estimated from a published graph.

	$\mathrm{R}_{\mathrm{s}}\left(\Omega ight)$	$\mathrm{R_{f}}\left(\Omega ight)$	$R_{ct}(\Omega)$
Initial	47.92	—	210.6
100 th cycle	43.6	37.07	95.81

Table S3. Values of R_s , R_f , and R_{ct} of MoS₂/C electrodes obtained by fitting data according to the equivalent circuit model presented in Figure 7b.

References

- 1. H. Hwang, H. Kim and J. Cho, *Nano Lett.*, 2011, **11**, 4826-4830.
- 2. K. Chang and W. Chen, ACS Nano, 2011, 5, 4720-4728.
- Y. T. Liu, X. D. Zhu, Z. Q. Duan and X. M. Xie, Chem. Commun., 2013, 49, 10305-10307.
- 4. Z. Wang, T. Chen, W. Chen, K. Chang, L. Ma, G. Huang, D. Chen and J. Y. Lee, *J. Mater. Chem. A*, 2013, **1**, 2202-2210.
- 5. G. Huang, T. Chen, W. Chen, Z. Wang, K. Chang, L. Ma, F. Huang, D. Chen and J. Y. Lee, *Small*, 2013, **9**, 3693-3703.
- X. Cao, Y. Shi, W. Shi, X. Rui, Q. Yan, J. Kong and H. Zhang, Small, 2013, 9, 3433-3438.
- 7. X. Zhou, L. J. Wan and Y. G. Guo, *Chem. Commun.*, 2013, 49, 1838-1840.
- 8. L. Ma, G. Huang, W. Chen, Z. Wang, J. Ye, H. Li, D. Chen and J. Y. Lee, *J. Power Sources*, 2014, **264**, 262-271.
- X. Zhou, Z. Wang, W. Chen, L. Ma, D. Chen and J. Y. Lee, *J. Power Sources*, 2014, 251, 264-268.
- Y. Gong, S. Yang, L. Zhan, L. Ma, R. Vajtai and P. M. Ajayan, *Adv. Funct. Mater.*, 2014, 24, 125-130.
- W. Fu, F. H. Du, J. Su, X. H. Li, X. Wei, T. N. Ye, K. X. Wang and J. S. Chen, *Sci. Rep.*, 2014, 4, 4673.
- 12. Y. Liu, Y. Zhao, L. Jiao and J. Chen, J. Mater. Chem. A, 2014, 2, 13109-13115.
- J. Zhou, J. Qin, X. Zhang, C. Shi, E. Liu, J. Li, N. Zhao and C. He, ACS Nano, 2015, 9, 3837-3848.
- S. Han, Y. Zhao, Y. Tang, F. Tan, Y. Huang, X. Feng and D. Wu, *Carbon*, 2015, 81, 203-209.
- J. Wang, J. Liu, J. Luo, P. Liang, D. Chao, L. Lai, J. Lin and Z. Shen, *J. Mater. Chem. A*, 2015, 3, 17534-17543.
- 16. H. Li, K. Yu, H. Fu, B. Guo, X. Lei and Z. Zhu, J. Phys. Chem. C, 2015, 119, 7959-7968.
- 17. H. Yoo, A. P. Tiwari, J. Lee, D. Kim, J. H. Park and H. Lee, *Nanoscale*, 2015, 7, 3404-3409.
- F. Zhang, Y. Tang, H. Liu, H. Ji, C. Jiang, J. Zhang, X. Zhang and C. S. Lee, ACS Appl. Mater. Interfaces, 2016, 8, 4691-4699.
- D. Xie, D. H. Wang, W. J. Tang, X. H. Xia, Y. J. Zhang, X. L. Wang, C. D. Gu and J. P. Tu, *J. Power Sources*, 2016, **307**, 510-518.

- 20. C. Zhao, X. Wang, J. Kong, J. M. Ang, P. S. Lee, Z. Liu and X. Lu, *ACS Appl. Mater*. *Interfaces*, 2016, **8**, 2372-2379.
- 21. Y. Teng, H. Zhao, Z. Zhang, Z. Li, Q. Xia, Y. Zhang, L. Zhao, X. Du, Z. Du, P. Lv and K. Swierczek, *ACS Nano*, 2016, **10**, 8526-8535.