Journal Name

Electronic Supplementary Information (ESI)

B/N co-doped carbon nanosphere frameworks as high-performance electrodes for supercapacitors

Jian Hao, ^{†a,b} Jiemin Wang, ^{†a} Si Qin,^a Dan Liu,^{a*}, Yinwei Li,^b and Weiwei Lei,^{a*}

^a Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Locked Bag 20000, Victoria 3220, Australia.

^b School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
[†] H. Jian and J. Wang contributed equally to this work.

1. Supplementary Methods:

Preparation of the electrode

The Ti foil was cut into rectangle pieces with dimension of 1.5x1 cm and 1x0.5 cm rectangle end was left as current collector. Around 1 mg sample with weight ratio (B/N-CNS: super-P: PVDF=85:10:5) was coated on the

Ti foil surface. The electrodes were dried in vacuum at 70 $^\circ\!C$ for 12 h.

Preparation of the solid gel electrolyte

The gel electrolyte was prepared by mixing 1 g H_2SO_4 and 1 g PVA in 10 ml deionized water at 85 $^\circ C$ for 1 h

under vigorous stirring. The resulting gel solution was cooled to room temperature. The electrode was soaked in the gel solution for 5 minutes. After that, the gel electrolyte was further dipped onto the surface of the electrode to ensure the contact.

Preparation of the sandwich-structured symmetrical supercapacitor

After the electrode was sufficiently infiltrated with the gel electrolyte and solidified for 12 h at room temperature, the as-prepared two electrodes were symmetrically integrated into one cell. And a piece of adhesive tape was adhered on the outer layer of the Ti foil to prevent the shot circuit (Fig. S6).

2. Supplementary Figures:

Fig. S1 a) SEM images showing the morphology of B/N co-doped carbon nanospheres frameworks at different magnifications. b) HRTEM image of B/N co-doped carbon nanosphere frameworks.

Fig. S2 a) XPS survey spectrum and b) O 1s spectrum of B/N co-doped carbon nanosphere frameworks.

Fig. S3 Raman spectra of B/N co-doped carbon nanosphere frameworks (B/N-CNS), N doped carbon

(N-DG800), B doped carbon (B-DG800) and pure carbon (DG800).

Fig. S4 a) CV curves (at 5 mV s⁻¹) and GCD curves (at 1A g⁻¹) of B/N co-doped carbon nanosphere frameworks

(B/N-CNS), N doped carbon (N-DG800), B doped carbon (B-DG800) and undoped carbon (DG800).

Fig. S5 Nyquist plots of electrochemical impedance of B/N co-doped carbon nanosphere frameworks (B/N-

CNS) and undoped carbon (DG800) in the frequency range of 100 kHz to 10 mHz.

Fig.S6 Long cycle stability of B/N-CNS framework electrodes in 1 M H_2SO_4 electrolyte at 1 A g⁻¹. a) Capacitance retention within 5000 cycles at 1 A g⁻¹. b) CV curves before and after 5000 cycles at 1 A g⁻¹.

Fig. S7 The CV curves (5 mV s⁻¹) after 5000, 15000, 20000 and 25000 cycles of charge-discharge at 10 A g⁻¹. It could be observed that the area of the CV curves increased within 10000 cycles and remained nearly unchanged after 10000 cycles, in accordance with the retention rate.

Fig. S8 The CV curve of symmetric supercapacitor based on two electrodes of B/N-CNS framework at a scan rate of 5 mV s⁻¹ with a 1 V voltage window. The CV curve shape is symmetrical.

Fig. S9 Schematic configuration and pictures of the all-solid sandwich-structured symmetric supercapacitor cell. The loading mass was around 1 mg B/N-CNS framework for a single Ti foil. The thickness and weight for one cell was around 0.57 mm and 200 mg, respectively. Two cells in series connection were able to power a LED bulb.

3. Supplementary tables:

Table S1 Capacitive performance comparison of B/N-CNS framework and other reported B, N doped carbon nanomaterials.

Samples	Maximum specific	Corresponding	Cycles	Reten	Corresponding	
	capacitance	current density		tion	current density	Refs
	(F g⁻¹)*	(A g ⁻¹)		(%)	(A g ⁻¹)	
B/N-CNS	423	0.2	30000	106	10	This
framework						work
B/N-carbon	358	0.1	10000	105	5	3
nanosheets film						
Polyaniline/boro						
n-doped	247	0.5	10000	90	10	4
graphene						
B/N co-doped	304	0 1	10000	93	2	5
porous carbon	30+	0.1	10000	55	L	5
N/B co-doped						
local graphitized	247	0.5	4000	96.2	1	6
carbon	2.0	0.0	1000	50.2	-	Ũ
framework						
BCN-3:1	244	1	2500	96	5	7
nanosheets		_			-	
BCN 700	130.7	0.2	2000	97.5	5	8
nanosheets					_	
Vertical aligned-	320.1	0.2	1000	95	1	9
BCN nanotubes		-				-

* The maximum specific capacitances calculated here and estimated in the literature are based on the GCD process with corresponding discharge current density.

References

1 Z.Tian, M. Xiang, J. Zhou, L. Hu, J. Cai, *Electrochimica Acta* 2016, **211**, 225.

- 2 Y. Xie, G. Liu, G. Lu, H. Cheng, Nanoscale, 2012, 4, 1267.
- 3 Z. Ling, Z. Wang, M. Zhang, C. Yu, G. Wang, Y. Dong, S. Liu, Y. Wang, J. Qiu, Adv. Funct. Mater. 2016, 26, 111.
- 4 Q. Hao, X. Xia, W. Lei, W. Wang, J. Qiu, Carbon 2015, 81, 552.
- 5 H. Chen, Y. Xiong, T. Yu, P. Zhu, X. Yan, Z. Wang, S. Guan, Carbon 2017, 113, 266.
- 6 D. Guo, J. Mi, G. Hao, W. Dong, G. Xiong, W. Li, A. Lu, Energy Environ. Sci. 2013, 6, 652.
- 7 I. Karbhal, R. R. Devarapalli, J. Debgupta, V. K. Pillai, P. M. Ajayan, M. V. Shelke, Chem. Eur. J. 2016, 22, 7134.
- 8 S. Dou, X. Huang, Z. Ma, J. Wu, S. Wang, *Nanotechnology* 2015, **26**, 045402.
- 9 E. lyyamperumal, S. Wang, L. Dai, ACS Nano 2012, 6, 5259.