Supplementary Information

CoS₂ nanodots trapped within the graphitic structured N-doped carbon spheres with efficient performances for lithium storage

Huicong Xia,^a Kexie Li,^a Yingying Guo,^a Junhui Guo,^c Qun Xu,^{*,a} Jianan Zhang^{*,a,b}

^aCollege of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001,

P. R. China.

^bKey Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai

University, Tianjin 30071, P. R. China.

^cState Key Laboratory of Inorganic Synthesis and Preparation, Jilin University, Changchun,

130012, P. R. China.

*Corresponding authors' Emails: <u>zjn@zzu.edu.cn</u> (J. Zhang) and <u>qunxu@zzu.edu.cn</u> (Q. Xu)

Figures

Figure S1. a) SEM and b) TEM images of the Co/NCSs.

Figure S2. XRD patterns of a) NCSs, b) Co/NCSs.

Figure S3. Nitrogen adsorption-desorption isotherms and insert: pore size distribution; a) CoS₂-in-wall-NCSs, b) NCSs, and c) Co/NCSs.

Figure S4. Survey XPS spectrum of CoS₂-in-wall-NCSs.

Figure S5. Equivalent series circuit for CoS₂-in-wall-NCSs samples as electrode materials for LIBs. Re: Electrolyte resistance, Rf: Resistance of surface film on the electrodes, Rct: Charge transfer impedance, Zw: Warburg impedance, Qdl1/Qdl2: Constant phase element.

Figure S6. TEM images of the CoS₂-in-pore-NCSs.

Samples	S _{BET} (m ² g ⁻¹)	Pore Diameter (nm)	Pore Volume (cc g ⁻¹)
CoS ₂ -in-wall-NCSs	480.590	3.835	0.268
Co/NCSs	449.960	1.345	0.193
NCSs	299.021	1.347	0.100

Table S1. BET Specific Surface Area of the samples.

	CoS ₂ -based	discharge	voltage	Capacity	Reference
_		capacity	range	Retention	
1	CoS ₂ -in-wall-NCSs	1415.4 mAh g ⁻¹ at 200 mA g ⁻¹	0.01-3.0 V	1080.6 mAh g ⁻¹ (200 mA g ⁻¹ , 500 cycles)	This work
2	CoS ₂ /NCNTFs	1191 mAh g ⁻¹ at 200 mA g ⁻¹	0.05-3.0V	1040 mAh g ⁻¹ (200 mA g ⁻¹ , 200 cycles)	Nano Res. doi: 10.1007/s12274-016-1394-1
3	CoS ₂ NP/Al ₂ O ₃ NSs	1150 mAh g ⁻¹ at 100 mA g ⁻¹	0.01-3.0 V	626 mAh g ⁻¹ (100 mA g ⁻¹ , 150 cycles)	J. Mater. Chem. A, 2017, 5, 2861
4	CoS ₂ nanobubble hollow prisms	910 mAh g ⁻¹ at 200 mA g ⁻¹	0.01-3.0 V	864 mA h g ⁻¹ (200 mA g ⁻¹ , 50 cycles)	Angew. Chem. Int. Ed. 2016, 55,13422.
5	rGO/CoSx	1248 mA h g ⁻¹ at 100 mA g ⁻¹	0.01-3.0V	670 mA h g ⁻¹ (100 mA g ⁻¹ , 100 cycles)	Chem. Eur. J. 2016, 22,1467.
6	Co ₉ S ₈ nanorods-coated carbon fiber	632 mA h g ⁻¹ at 100 mA g ⁻¹	0.01-3.0V	515 mA h g ⁻¹ (100 mA g ⁻¹ , 60 cycles)	Chem. Mater. 2016, 28, 3897.
7	NC/CoS ₂	710 mAh g ⁻¹ at 100 mA g ⁻¹	0.01-3.0V	560 mAhg ⁻¹ (100 mA g ⁻¹ , 50 cycles)	small 2015, 11, 2511.
8	the yolk–shell CoS2@NG	995 mA h g ⁻¹ at 0.2C	0.01-3.0V	1099 mA h g ⁻¹ (100 mA g ⁻¹ , 150 cycles)	Chem. Eur. J. 2015, 21, 4359.
9	worm-like CoS ₂	1416 mA h g ⁻¹ at 100 mA g ⁻¹	0.05-3.0V	883 mA h g ⁻¹ (100 mA g ⁻¹ , 100 cycles)	J. Mater. Chem. A, 2015, 3,10677.
10	hollow CoS2@C	800 mA h g ⁻¹ at 500 mA g ⁻¹	0.01-3.0V	730 mA h g ⁻¹ (500 mA g ⁻¹ , 200 cycles)	J. Power Sources, 2015, 286, 159.

Table S2. Electrochemical performances of the previous reported CoS_2 -basednanocomposites anodes.