Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supplementary Materials

Photogenerated-Carrier Separation along Edge Dislocation of WO₃ Single Crystal Nanoflower Photoanode

Yuyu Bu^a, Jun Ren^d, Huawei Zhang^e, Dongjiang Yang^{e*}, Zhuoyuan Chen^{b*} and Jin-Ping Ao^{a*}

Fig. S1. Vertical growth WO₃ nanosheet on polished Ti substrate. (A) low resolution; (B) high resolution.

Fig. S2. The UV/Vis diffuse reflectance spectra of WO₃-E8-2h.

Fig. S3. The XPS spectra of the WO₃-E8-2h. (A) the total XPS survey spectrum; (B) the W4f core level XPS spectrum; (C) the O2p core level XPS spectrum; (D) the Ti2p core level XPS spectrum.

Fig. S4. (A) Top SEM image of WO_3 -E8-2h, insert is the high-resolution SEM of it; (B) Cross-section SEM image of WO_3 -E8-2h; (C) Selected area of the SEM image on the top of WO_3 -E8-2h; (D) distribution of the O and W elements in the selected area. (E) Top SEM image of WO_3 -E8-12h, insert is the high-resolution SEM of it.

Fig. S5. XRD results of WO_3 -E8 with different annealing time (2, 4, 8, 12 hours) at 500

Fig. S6. (A) PEC Water splitting for O₂ and H₂ evolution properties of WO₃-E8-2h and WO₃-E8-12h (bias potential 1.5 V vs Ag/AgCl); (B) Spectral energy distribution curve of the Xe light used in this study.

The Faradic efficiency can be described as follows:

Faradic efficiency = $\frac{m \cdot n \cdot F}{i \cdot t} \times 100\%$ (1)

In which Equ., the *m* is the mole value for O_2 at a time. *n* is the electrons exchange number for one O_2 molecular production. *F* is the faraday constant. *i* is the photocurrent density. *t* is the reaction time.

Because of the photocurrent density of WO₃-E8-2h photoanode just can keep at near 2.1 mA cm⁻² in the initial one hour, so we calculated the Faradic efficiency in this term. Combination the information in Fig. 5C and Fig. S6A, the Faradic efficiency =

$$\frac{18.4 \times 10^{-6} \times 4 \times 96487}{2.1 \times 10^{-3} \times 3600} \times 100\% \approx 93.93\%$$

So, in the initial one hour, the WO₃-E8-2h photoanode shows higher than 90% Faradic efficiency. The losing Faradic efficiency may contributed to the photoanode corrosion.

1	1		1	5		
	WO ₃ with different structure	Light intensity (mW·cm ⁻ ²)	Bias potential (V)	Electrolyte	Photoinduced current density (mA·cm ⁻²)	Ref.
	WO ₃ Flake wall	100 (AM 1.5)	1.0 V (vs Ag/AgCl)	Na ₂ SO ₄ (0.1 M)	1.4	[1]
	Molecular iron modified WO ₃	100 (AM 1.5)	1.0 V (vs Ag/AgCl)	Na ₂ SO ₄ (0.1 M)	1.1	[2]
	WO ₃ planar film	100 (AM 1.5)	1.0 V (vs Ag/AgCl)	Na ₂ SO ₄ (0.5 M)	1.0	[3]

Tab. S1. Comparison of the photoelectrochemical performance of the typical WO_3 photoelectrodes reported in literature and in the present study.

WO film	₃ planar	100 (AM 1.5)	1.0 V (vs Ag/AgCl)	Na ₂ SO ₄ (0.5 M)	0.5	[4]
WO Nan array	³ orod y	100 (AM 1.5)	1.0 V (vs Ag/AgCl)	Na ₂ SO ₄ (0.5 M)	0.25	[5]
WO Nan	³ oflower	100 (AM 1.5)	1.0 V (vs Ag/AgCl)	Na ₂ SO ₄ (0.1 M)	1.8	Present study

Tab. S1 shows the photoelectrochemical performance of WO₃ with different morphologies prepared in recent years and compared them with this work. According to the reports from the literatures, the best photoelectrochemical performance was obtained by WO₃ with flake wall like structure in Na₂SO₄ solution under the illumination of AM 1.5 (100 mW·cm⁻²) and at the bias potential of 1 V (vs Ag/AgCl), and the photoinduced current density of WO₃ with this structure could reach 1.4 mA·cm⁻². In the present work, for the nanoflower-structured WO₃ thin-film photoelectrode with 8 h of hydrothermal reaction, a photoinduced current density of 1.8 mA·cm⁻² was obtained under the same test condition as in the compared references, which is significantly enhanced compared with that in the previous reports.

Fig. S7. Time-resolved photoluminescence (TR-PL) spectrum of WO₃ photoanodes with different annealing times (2 h to 12 h) at the emission wavelength of 440 nm.

Fig. S8. TEM images of WO_3 -E8-2h thin film. (A) low and (B-D) high resolution; Selected area electron diffraction (SAED) pattern for this sample is inserted in (B); and the corresponding IFFT images insert in (C) and (D).

Reference

- [1] F. Amano, D. Li, B. Ohtani, B. Chem. Commun. 2010, 46, 2769.
- [2] B. M. Klepser, B. M. Bartlett, J. Am. Chem. Soc. 2014, 136, 1694.
- [3] K. Zhang, X. J. Shi, J. K. Kim, J. H. Park, Chem. Chem. Phys. 2012, 14, 11119.
- [4] J. Su, L. Guo, N. Bao, C. A. Grimes, C. Nano Lett. 2011, 11, 1928.
- [5] Y. Pihosh, I. Turkevych, K. Mawatari, T. Asai, T. Hisatomi, J. Uemura, M. Tosa, K. Shimamura, J. Kubota, K. Domen, T. Kitamori, *Small* 2014, *10*, 3692.