Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Hierarchical assembly and superior sodium storage properties of sea-sponge structural C/SnS@C nanocomposite

Shipei Chen,^{‡a} Ke Xing,^{‡a} Jiahao Wen,^b Ming Wen,^{*a} Qingsheng Wu^a and Yi Cui^c

^a School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical

Assessment and Sustainability, Tongji University, Shanghai 200092, China.

^b School of Electrical Engineering, Chongqing University, Chongqing 400044, China.

^c Department of Materials Science and Engineering, Stanford University, Stanford, California

94305*,* USA.

Corresponding author.

E-mail: m_wen@tongji.edu.cn (M. Wen)

[‡] These authors contributed equally to this work.

Materials and Methods:

Chemicals. Tin(IV) chloride (SnCl₄·5H₂O, \geq 99.8%), thioacetamide (CH₃CSNH₂, \geq 98%), ethylene glycol (C₂H₆O₂, \geq 99.0%), ethanol (C₂H₆O, \geq 99.7%), sodium chloroacetate (ClCH₂COONa, \geq 98%), glucose (C₆H₁₂O₆, \geq 99.8%), sodium (Na, \geq 99%)were purchased from Sinopharm Chemical Reagent Co., Ltd. Electrolyte (1M NaClO4 in EC/PC 1:1 by volume with FEC 5wt%) was purchased from Shanghai Xiaoyuan Energy Technology Co. Ltd. All the reagents were analytical purity and used without further purification.

Synthesis of S-MCSs. The S-MCSs are prepared by ultrasonically nebulizing aqueous solutions of sodium chloroacetate (CICH₂COONa, 1.5 M) into droplets using a household humidifier, an Ar flow carries the droplets into a furnace with 700°C, after precursor decomposed, the product is collected in water bubblers with the generated salt dissolving, leaving behind the S-MCSs. Subsequently, the products were centrifuged and washed with ethanol and water, and dried overnight in a vacuum oven at 80 °C.

Fig. S1 XRD patterns: (A) Products obtained in ethanol solvent without deionized water washing; (B) Products synthesized in water solvent.

Fig. S2 SEM images of C/SnS_2 composite obtained at 25°C in ethanol solvent within different reaction time: 6 hrs (A), 12 hrs (B), 24 hrs (C), and 48 hrs(D).

Fig. S3 SnS₂ prepared without S-MCSs engaging: (A) SEM image; (B) TEM iamge; (C) HRTEM image; (D) SAED pattern.

Fig. S4 C/SnS nanocomposite prepared under argon by heating treatment of C/SnS_2 at 500°C for 3 hrs: (A,B) SEM image; (C) TEM image; (D) HETEM image from marked area in (C); (E) SAED pattern of SnS NPs on S-MCSs.

Fig. S5 SEM images in low (a) and high (b) magnification of $C/SnS_2@pGlu$ prepared at hydrothermal time of 6 hrs (A), 12 hrs (B) and 24 hrs (C).

Fig. S6 SEM images in low (a) and high (b) magnification of $C/SnS_2@pGlu$ prepared at glucose concentration at 0.75 M (A), 1.0 M (B) and 1.25 M (C).

Fig. S7 SEM images in different magnification of C/SnS_2 prepared at Sn^{4+} concentration at 5 mM (A), 10 mM (B), 15 mM (C) and 20 mM (D), respectively.

Fig. S8 Raman spectra of SnS_2 nanoflakes in the wavelength range of 100–2100 cm⁻¹.

Fig. S9 XRD patterns of TG measured residue substances of SnO2 for C/SnS $_2$ (a) and C/SnS@C (b).

Fig. S10 TG curves under Air of C/SnS $_2$ (A) and C/SnS@C (B) prepared in different concentration of Sn4+ at 20 mM (a), 15 mM (b), and 10 mM(c).

Fig. S11 TG curves under N_2 of C/SnS₂@pGlu (a) and pure SnS₂ (b).

Fig. S12 N₂ adsorption-desorption isotherms of S-MCSs (A), SnS₂ (B) and C/SnS₂ (C).

Fig. S13 XPS full spectra (A) and Sn 3d (B) of C/SnS.

Fig. S14 CV curves of C/SnS₂ for the first 5 cycles at 0.1 mV s⁻¹.

Fig. S15 Galvanostatic charge-discharge profiles for C/SnS@C at 0.1 A g⁻¹ for the first three cycles.

Fig. S16 (A,B) CV curves of S-MCSs and SnS_2 at scan rate from 0.1 to 1.6 mV s⁻¹; (C, D) Capacity separation diffusion-controlled Id and capacitive Is for anodic peak in S-MCSs and SnS_2 ; (E, F) Relationships for S-MCSs and SnS_2 between the log i (peak current) and log v (scan rate) in anodic process and cathodic process (scanning rate between 0.1-1.6 mV s⁻¹).

Fig. S17 Rate performance of C/SnS (A); Galvanostatic charge-discharge profiles for C/SnS in the potential range of 0.01-2.5 V (vs. Na/Na+) at different current density (B).

Fig. S18 (A) Cycling performance of S-MCSs at 20 A g⁻¹; SEM images of S-MCSs in low magnification (B) and high magnification (C) after 16000 cycles.

Fig. S19 Randle-type equivalent circuit model for S-MCSs, SnS_2 , C/SnS_2 , C/SnS, and C/SnS@C electrodes. R_e : the electrolyte resistance; C_f and R_f : the capacitance and resistance of the SEI film and contact corresponding to the high-frequency semicircle, respectively; C_{dl} and R_{ct} : the double-layer capacitance and charge transfer resistance related to the middle-frequency semicircle, respectively; Z_w : the Warburg impedance related to the diffusion of Na-ion into the bulk of composite electrodes.

Fig. S20 Cycling performance of C/SnS@C at a current density of 0.5 A $g^{\text{-}1}$

Fig. S21 The low-resolution SEM images of C/SnS@C for fresh (A) and after 300 cycles (B).

Fig. S22 SEM images of C/SnS₂ (A) and C/SnS (B) electrode after 300 cycles.

Fig. S23 Cyclic performances of C/SnS₂ (A) and C/SnS (B) at 1 A g^{-1} .

Materials		C/SnS@C	MoS ₂ /CNTs	MoSe ₂ /CNT	FeSe _x -rGO	SnS/C	SnS@RGO
Curren t densit y (A g ⁻¹)	0.1	550	-	_	-	419	405
	0.2	530	450	382	478	-	351
	0.5	430	320	346	423	334	_
	1	350	_	-	377	310	_
	2	280	-	-	342	-	-
	5	190	_	255	250	205	_
Ref.(year)		this work	41(2014)	42(2016)	43(2016)	25(2015)	18(2015)

 Tab. S1 Rate performance compare with other reported works in literatures.

Tab. S2 Kinetic parameters of S-MCSs, SnS₂, C/SnS₂, C/SnS, and C/SnS@C electrodes after 5 cycles.

Samples	R_{ct} [Ω]	R _{ct} fit accuracy		
S-MCSs	211	4.7%		
SnS ₂	1016	3.2%		
C/SnS ₂	630	2.5%		
C/SnS	695	2.2%		
C/SnS@C	259	2.0%		

Tab. S3 Simulation results of the EIS spectra using the Randle-type equivalent circuit equivalent circuit shown in Fig. 5D.

Cycle	R_f [Ω]	R _f fit accuracy	R_{ct} [Ω]	R _{ct} fit accuracy
Fresh	_	_	1324	3.6%
1 st	18	6.1%	82	5.1%
300 th	3.7	5.2%	194	1.7%