Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting information

Zeolite-templated nanoporous carbon for high-performance supercapacitors

Hao Lu,^a Kyoungsoo Kim,^b Yonghyun Kwon,^{b,c} Xiaoming Sun,^a Ryong Ryoo^{*a,b,c} and X. S. Zhao^{*a}

^aSchool of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia. E-

mail: george.zhao@uq.edu.au (X. S. Zhao)

^bCenter for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic

of Korea.

^cDepartment of Chemistry, KAIST, Daejeon 34141, Republic of Korea. E-mail: <u>rryoo@kaist.ac.kr</u> (R. Ryoo)

Fig.S1. Photograph of the carbon deposition rig for carbon synthesis in a large-scale. N₂/ethylene mixture was bubbled through water before reaching a zeolite bed (left inset). A 3 cm-thick bed of zeolite filled in the plug-flow reactor equipped with a fritted disk was used in the synthesis (right inset).

Fig. S2. SEM images of YZC and BZC, and their separate template.

Fig. S3. TEM images of YZC and BZC.

Fig. 2a schematically shows the carbon deposition process using calcium-containing zeolites as templates. Firstly, the ion exchange for Na⁺ containing template with Ca²⁺ was conducted. Then the Ca-containing template was heated at 600 °C for 1 h under ethylene flow, followed by heat treatment at 850 °C for 2 h under N₂ atmosphere. The Ca²⁺ can promote the ethylene carbonization, which lowers the carbonization temperature, thus preventing the non-selective carbon deposition at the external surfaces.^{1, 2} Finally, the sample was washed with HF/HCl solution, which washes away the zeolite template and simultaneously

adds certain content of oxygen-containing surface functional groups, contributing to pseudocapacitance. The SEM images (Fig. 2b-c, Fig. S2) show that the carbon products were all good replica of their separate template. The TEM images in Fig. 2d and Fig. S3 show ordered porous structure of the carbons. Especially the TEM image in Fig. 2d and the HRTEM image in Fig. 2e show ordered mesoporous/microporous structure of NBZC, revealing the selective deposition of carbon inside the template, which was further confirmed by the XRD results in Fig. S4. ^{1, 3, 4}

Fig. S4. XRD patterns of YZC, BZC, and NBZC and their separate template. The carbons show a well-resolved peak at $2\theta \approx 7^{\circ}$, which corresponds to the (100) or (101) diffraction of the templates, indicating the ordered micropores in the carbons.^{1, 3, 4}

Fig. S5. (a) Nyquist plot, (b) Bode plots of NBZC in a three-electrode system with 1 M H₂SO₄ as aqueous electrolyte.

Fig. S6. N₂ adsorption/desorption isotherms (a) and pore size distributions calculated using the DFT model (b) and BJH model (c) of YZC and BZC.

Fig. S7. Raman spectra of YZC, BZC, and NBZC.

Fig. S8. XPS survey spectra of YZC and BZC (a), C 1s envelope of YZC (b) and BZC (c).

Fig. S9. STEM-EDS mapping of C (a), O (b) and HAADF-STEM image (c) of NBZC.

The chemical composition of NBZC was characterised using the scanning transmission electron microscopy - energy dispersive spectrometer (STEM - EDS) and XPS techniques. The STEM - EDS images, Figs. S9a-b, and the STEM image conducted in a high-angle annular dark field mode (HAADF - STEM), Fig. S9c, show that oxygen uniformly presents in the sample. The XPS survey spectrum of NBZC is shown in Fig. 4a. The two distinct peaks at 284.4 eV and 532 eV correspond to binding energies of C 1s and O 1s electrons, respectively. The quantitative analysis of the spectrum showed that it contains 90.8 at% C and 9.2 at% O. The presence of oxygen was due to partial oxidation of the carbon framework during the zeolite template removal process using HF/HCl solution. This process involves heat generation and the heat increases with the amount of washed samples. Therefore, the oxygen content of the carbon prepared in a large scale is slightly higher than that of the one prepared in a small scale. Fig. 4b shows the deconvolution of C 1s peak. Four peaks corresponding to sp^2 C-C (284.4 eV), sp^3 C-C (285.2 eV), C-O (286.1 eV) and C=O (288.4 eV) can be seen.^{1,5}The O 1s peaks at 531.3 and 532.8 eV correspond to C=O and C-O respectively.⁶

Fig. S10. Equivalent circuit used for the simulation of EIS data.

Fig. S11. Real part resistance vs frequency (a) and Bode phase angle plots (b) of the symmetric capacitor with $1 \text{ M H}_2\text{SO}_4$ as the electrolyte of NBZC.

Figure S12. N_2 adsorption-desorption isotherms and textural properties (inset) of the sample NBZC before and after 1 M H_2SO_4 treatment for 1 d at 25 °C.

Figure S13. XPS survey spectra of original sample NBZC as well as that of soaked after 1 month and 2 months.

Fig. S14. Electrocapacitive performance of electrode NBZC in a symmetric cell with 2 M LiCl (a, b, c) or 1 M LiPF6 EC/DEC (d, e, f) as electrolyte.

The real part specific capacitance (C):

$$C'(\omega) = \frac{-Z''(\omega)}{\omega |Z(\omega)|^2}$$
(1)

The imagine part specific capacitance (C'')

$$C''(\omega) = \frac{Z'(\omega)}{\omega |Z(\omega)|^2}$$
(2)

Table S1. Specific capacitance values of NBZC at different current densities in a three-electrode system with 1 M H₂SO₄ as

aqueous electrolyte.

Current density (A/g)	0.2	0.5	1	2	5	10	15	20
C _s (F/g)	307	268	250	235	215	199	189	177

Carbon	Carbon-based	Pore	Preparation	SSA	Specific capacitance	Cycle stability	Ref.
precursor	electrodes	structure	method	(m²/g)			
Carbon	Nitrogen-doped	Micro/meso/macroporous	Carbonization	562	202 F/g at 1 A/g, three-electrode, 6M KOH	97 % retention after 3000	7
nanofibers	porous carbon					cycles at 1 A/g	
	nanofibers						
Lignin	Porous lignin-derived	3D hierarchically porous	KOH activation	907	185 F/g at 0.05 A/g, two-electrode, 1M $\rm H_2SO_4$	97.3 % retention after	8
	carbon					5000 cycles at 1 A/g	
Polypyrrole	Nitrogen-doped	3D hierarchically	KOH activation	2870	318 F/g at 0.5 A/g, three-electrode, 6M KOH	95.8 % retention after	9
microsheets	porous carbon	micro/meso/macroporous				10000 cycles at 5 A/g	
Eggshell	Porous carbon film	3D macroporous	Air activation	221	284 F/g at 0.2 A/g, three-electrode, 1M H_2SO_4	97 % retention after	10
membranes						10000 cycles at 4 A/g	
Pig bone	Porous carbon	Hierarchically	KOH activation	2157	185 F/g at 0.05 A/g, two-electrode, 7M KOH	-	11
		micro/meso/macroporous					
Pitch	pillared-porous carbon	3D mesoporous	MgO-template	883	289 F/g at 2 mV/s, three-electrode, 6M KOH	94 % retention after	12
	nanosheet					10000 cycles at 200 mV/s	
GO	RGO hydrogel film	Hierarchically	Blade-cast and freeze	1316	71 mF/cm ² at 1 mA/cm ² , two-electrode, 1M H ₂ SO ₄	98 % retention after 5000	13
		meso/macroporous	drying			cycles at 10 mA/cm ²	
Flaked	RGO film	3D porous	CaCO ₃ -template	-	~125 F/g at 0.5 A/g, two-electrode, 1M H_2SO_4	90 % retention after 5000	14
graphite						cycles at 5 A/g	
Glucose	Porous carbon hollow	Micropore shell with	Colloidal silica hard	658	269 F/g at 0.5 A/g, three-electrode, 6M KOH	92 % retention after 1000	15
	spheres	meso/mcropore cores	template			cycles at 5 A/g	
Gelatin	Nitrogen-doped	Microporous/mesoporous	Dual-template	1518	110 F/g at 2 A/g, two-electrode cell, 1M EMIMBF 4/AN	98.2% retention after	16
	porous carbon					10000 cycles at 20 A/g	
Phenolic	Porous carbon spheres	3D Mesoporous	Dual-template	1320	208 F/g at 0.5 A/g, three-electrode, 2M H_2SO_4	~100 % retention after	17
resol						1000 cycles at 1.59 A/g	
PAN	Nitrogen-doped	Hierarchically	Dual-template	699	170 F/g at 1 A/g, two-electrode, 6M KOH	94 % retention after 8000	18
	carbon nanofibers	micro/mesoporous				cycles at 1 A/g	
Coal tar	Hierarchical porous	Hierarchically	Fe ₂ O ₃ -template and KOH	1330	194 F/g at 0.1 A/g, two-electrode, 6M KOH	93.2 % retention after	19
pitch	carbon	micro/mesoporous	activation			1000 cycles at 0.1 A/g	
Gelatin	Porous carbon	2D porous carbon	Montmorillonite-template	2270	228 F/g at 1 A/g, two-electrode, 6M KOH	-	20
	nanosheets	nanosheet	and KOH activation				
MOF-5	Porous carbon	Microporous/mesoporous	MOF-template and KOH	2222	271 F/g at 2 mV/s, three-electrode, 6M KOH	-	21
			activation				
Ethylene	Porous carbon	3D hierarchically	calcium-catalysed zeolite-	2280	307 F/g at 0.2 A/g, three-electrode, 1M H ₂ SO ₄	153 % retention two-	This
		micro/mesoporous	template		413 mF/cm ² at 0.25 mA/cm ² , two-electrode, PVA/ H ₂ SO ₄	month-shelfing time after	work
					(active material area of 1 cm ² , mass loading of 2 mg/cm ²)	17000 cycles at 1 A/g	

Table S2. Comparison of the preparation and properties of porous carbon materials and their use in SCs

Table S3. Areal specific capacitance values of NBZC at different current densities in an all-solid-state capacitor with PVA / H_2SO_4 gel as the electrolyte.

Current density (mA/cm ²)	0.25	0.5	1	2	5	10	15	20
C_a (mF/cm ²)	413	400	380	358	314	246	197	160

Reference

- 1. K. Kim, T. Lee, Y. Kwon, Y. Seo, J. Song, J. K. Park, H. Lee, J. Y. Park, H. Ihee and S. J. Cho, *Nature*, 2016, **535**, 131-147.
- 2. Z. Yang, Y. Xia and R. Mokaya, J. Am. Chem. Soc., 2007, **129**, 1673-1679.
- 3. K. Kim, M. Choi and R. Ryoo, *Carbon*, 2013, **60**, 175-185.
- 4. Y. Xia, Z. Yang and R. Mokaya, *Nanoscale*, 2010, **2**, 639-659.
- 5. L. Sun, C. Tian, M. Li, X. Meng, L. Wang, R. Wang, J. Yin and H. Fu, J. Mater. Chem. A, 2013, 1, 6462-6470.
- 6. S. Song, F. Ma, G. Wu, D. Ma, W. Geng and J. Wan, J. Mater. Chem. A, 2015, **3**, 18154-18162.
- 7. L.-F. Chen, X.-D. Zhang, H.-W. Liang, M. Kong, Q.-F. Guan, P. Chen, Z. Y. Wu and S. H. Yu, *ACS nano*, 2012, **6**, 7092-7102.
- 8. W. Zhang, H. Lin, Z. Lin, J. Yin, H. Lu, D. Liu and M. Zhao, ChemSusChem, 2015, 8, 2114-2122.
- 9. L. Qie, W. Chen, H. Xu, X. Xiong, Y. Jiang, F. Zou, X. Hu, Y. Xin, Z. Zhang and Y. Huang, *Energy Environ. Sci.*, 2013, **6**, 2497-2504.
- Z. Li, L. Zhang, B. S. Amirkhiz, X. Tan, Z. Xu, H. Wang, B. C. Olsen, C. Holt and D. Mitlin, *Adv. Energy Mater.*, 2012, 2, 431-437.
- 11. W. Huang, H. Zhang, Y. Huang, W. Wang and S. Wei, *Carbon*, 2011, **49**, 838-843.
- 12. Z. Fan, Y. Liu, J. Yan, G. Ning, Q. Wang, T. Wei, L. Zhi and F. Wei, Adv. Energy Mater., 2012, 2, 419-424.
- 13. Z. Xiong, C. Liao, W. Han and X. Wang, *Adv. Mater.*, 2015, **27**, 4469-4475.
- 14. Y. Meng, K. Wang, Y. Zhang and Z. Wei, *Adv. Mater.*, 2013, **25**, 6985-6990.
- 15. Y. Han, X. Dong, C. Zhang and S. Liu, J. Power Sources, 2012, 211, 92-96.
- 16. X. Y. Chen, C. Chen, Z. J. Zhang and D. H. Xie, J. Mater. Chem. A, 2013, 1, 10903-10911.
- 17. Q. Li, R. Jiang, Y. Dou, Z. Wu, T. Huang, D. Feng, J. Yang, A. Yu and D. Zhao, *Carbon*, 2011, **49**, 1248-1257.
- 18. Q. Wang, Q. Cao, X. Wang, B. Jing, H. Kuang and L. Zhou, J. Solid State. Electrochem., 2013, 17, 2731-2739.
- 19. X. He, N. Zhao, J. Qiu, N. Xiao, M. Yu, C. Yu, X. Zhang and M. Zheng, J. Mater. Chem. A, 2013, 1, 9440-9448.

- 20. X. Fan, C. Yu, J. Yang, Z. Ling, C. Hu, M. Zhang and J. Qiu, *Adv. Energy Mater*, 2015, **5**, 14011761.
- 21. J. Hu, H. Wang, Q. Gao and H. Guo, *Carbon*, 2010, **48**, 3599-3606.