Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting Information for

A robust multifunctional metal-organic polyhedra for high proton conductivity and selective CO₂-capture

Wen-Hao Xing,^a Hai-Yang Li,^a Xi-Yan Dong,^{*ab} and Shuang-Quan Zang^{*a}

^a College of Chemistry and Molecular Engineering, Zhengzhou University,

Zhengzhou 450001, China.

^b College of Chemistry and Chemical Engineering, Henan Polytechnic University,

Jiaozuo 454000, China.

*E-mail: <u>dongxiyan0720@hpu.edu.cn</u> (X-Y Dong); <u>zangsqzg@zzu.edu.cn</u> (S-Q Zang)

Figure S1 NMR Spectra of Na₂H₂L

Figure S2. Optical image of MOP-1

Figure S3. The included angle between the plane determined by zirconium and carboxylate and the plane determined by ligand in MOP-1(a) and in previous work (b).¹

Figure S4. ATR-IR spectrum of MOP-1.

Figure S5. PXRD patterns of the samples of MOP-1 after proton conductivity measurement (magenta), the activated (green), the as-synthesized sample (red), and the simulated PXRD (black).

Figure S6. Thermal gravimetric curves for MOP-1

Fiure S7. N₂ sorption data at 77 K.

The IAST-predicted separation selectivity

The pure-component CO_2 and N_2 adsorption isotherm data of measured at 298 K were fitted with the dual-site Langmuir model

$$Q = Q_1 \frac{k_1 P}{1 + k_1 P} + Q_2 \frac{k_2 P}{1 + k_2 P}$$
(1)

where, *P* is the pressure of the bulk gas at equilibrium with the adsorbed phase (kPa), *Q* is the adsorbed amount per mass of adsorbent (cm³ kg⁻¹), *QI* and *Q*₂ are the saturation capacities of sites 1 and 2 (cm³ kg⁻¹), *k*₁ and *k*₂ are the affinity coefficients of sites 1 and 2 (kPa⁻¹).

A DL-IAST model can be obtained by combining IAST with dual-site Langmuir model.^{2, 3} When the mixture reaches equilibrium, the simplification pressure of component i and component j are equal, and can get the mole fraction of component i in the adsorption phase.

$$Q_{1i}Ln\left(1+\frac{k_{1i}Y_iP_t}{X_i}\right) - Q_{1j}Ln\left(1+\frac{k_{1j}Y_jP_t}{X_j}\right) + Q_{2i}Ln\left(1+\frac{k_{2i}Y_iP_t}{X_i}\right) - Q_{2j}Ln\left(1+\frac{k_{2j}Y_jP_t}{X_j}\right) = 0$$

$$(2)$$

 Q_{1i} , k_{1i} , Q_{2i} and k_{2i} are the DL model parameters of component *i*. Q_{1j} , k_{1j} , Q_{2j} and k_{2j} are the DL model parameters of component *j*, and Y_i is the mole fraction of component *i* in the gas phase, X_i is the mole fraction of component *i* in the gas phase, X_i is the mole fraction of component *i* in the adsorption phase. For a given P_t (equilibrium pressure) and Y_i , X_i can be solved by the nonlinear numerical equation in MATLAB.

The selectivity of preferential adsorption of component i over component j in a mixture containing i and j, perhaps in the presence of other components too, can be formally defined as

$$\boldsymbol{S} = \frac{X_i / Y_i}{X_j / Y_j} \tag{3}$$

where, X_i and X_j are the mole fractions of component *i* and component *j* in the adsorption phase; Y_i and Y_j are components *i* and *j* in the gas phase scores.

Figure S8. CO₂ isotherm sorption data at 273 and 293 K for MOP-1 and nonlinear curve fitting suing Double-site Langmuir.

Figure S9. N₂ isotherm sorption data at 273 and 293 K for MOP-1 and nonlinear curve fitting suing Double-site Langmuir.

Figure S10. The CO_2 isosteric heats of adsorption (Q_{st}) of MOP-1

Figure S11. IAST Selectivity for MOP-1.

Figure S12. Pore size distribution in the range of 0.28 – 2.5 nm of MOP-1.

Figure S13. Water adsorption and desorption isotherms of MOP-1

The peoton conductivity studies

The conductivity (σ , S cm⁻¹) of the sample was obtained as follows:

$$\sigma = \frac{l}{AR} \tag{4}$$

where l (cm), A (cm²), and R (U) are the piece thickness, piece area, and resistance value, respectively. The proton transport activation energy derived from the Arrhenius equation, expressed as follows:

$$\ln(\sigma T) = \ln A - \frac{Ea}{k_B T}$$
(5)

where the symbol σ is the proton conductivity, **Ea** represents the proton transport activation energy, $\mathbf{k}_{\mathbf{B}}$ is the Boltzmann constant, and **A** is the pre-exponential factor.

Figure S14. Temperature dependence of Nyquist plots for the MOP-1 at 22% RH.

Figure S15. Temperature dependence of Nyquist plots for the MOP-1 at 53% RH.

Figure S16. Temperature dependence of Nyquist plots for the MOP-1 at 73% RH.

Figure S17. Temperature dependence of Nyquist plots for the MOP-1 at 93% RH.

Figure S18. The cyclic stability test of proton conductivity.

Figure S19. Error analysis of the three times cyclic stability test.

	5
Compound	MOP-1
Empirical formula	$C_{78}H_{73.92}Na_{3.96}O_{47.96}S_6Zr_6$
Formula weight	2609.37
Temperature/K	150
Crystal system	trigonal
Space group	R-3c
a/Å	16.2679(2)
b/Å	16.2679(2)

Table S1. Crystal data and structure refinement for cage-1.

c/Å	84.1291(12)
$\alpha/^{\circ}$	90
$\beta/^{\circ}$	90
$\gamma^{/\circ}$	120
Volume/Å ³	19281.5(5)
Z	6
$\rho_{calc}g/cm^3$	1.348
μ/mm^{-1}	5.532
F(000)	7831.0
Crystal size/mm ³	$0.15 \times 0.15 \times 0.1$
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2θ range for data collection/ $^{\circ}$	10.498 to 134.946
Index ranges	$-18 \le h \le 19, -14 \le k \le 19, -100 \le l \le 78$
Reflections collected	17402
Independent reflections	3873 [$R_{int} = 0.0317$, $R_{sigma} = 0.0289$]
Data/restraints/parameters	3873/74/260
Goodness-of-fit on F ²	1.090
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0480, wR_2 = 0.1464$
Final R indexes [all data]	$R_1 = 0.0512, wR_2 = 0.1490$
Largest diff. peak/hole / e Å ⁻³	1.23/-0.93
CCDC number	1575660

 $R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|. \ wR_2 = \left[\sum w(F_0^2 - F_c^2)^2 / \sum w(F_0^2)^2\right]^{1/2}$

Table S2	. Selected bon	d lengths (Å) and bond a	angles () f	or MOP-1.
			,		

bond lengths (Å)				
Zr1–Zr1 ¹	3.3649(5)	$Zr1-Zr1^2$	3.3648(5)	
Zr1-O1	2.0780(16)	Zr1-C2	2.524(4)	
$Zr1-O4^2$	2.197(3)	Zr1–C3	2.548(4)	
$Zr1-O2^{1}$	2.138(3)	Zr1-C4	2.527(4)	
Zr1-O3	2.197(3)	Zr1-C5	2.509(5)	
$O1-Zr1^1$	2.0779(16)	Zr1-C6	2.504(5)	
$O1-Zr1^2$	2.0779(16)	O8–Na1A ³	2.592(9)	
$O4-Zr1^1$	2.196(3)	$O2-Zr1^2$	2.138(3)	
Na1A–S1 ³	3.017(7)	Na1A-O10A	2.285(10)	
Na1A–O7 ³	2.414(6)	Na1A-O9B	2.49(3)	
$Na1A-O8^3$	2.592(9)	Na1B-O10B	2.319(11)	
S1–Na1A ³	3.016(7)	Na1B-O9A	2.294(10)	
bond angles (°)				
$Zr1^{1}$ – $Zr1$ – $Zr1^{2}$	60.0	Zr1 ¹ –O1–Zr1	108.12(12)	
O1–Zr1–Zr1 ²	35.94(6)	Zr1 ² -O1-Zr1 ¹	108.12(12)	
$O1 - Zr1 - O4^{1}$	78.69(12)	Zr1 ² –O1–Zr1	108.12(12)	
O1-Zr1-O2	73.31(11)	C10–S1–Na1A ³	113.0(2)	
O1-Zr1-O3	79.87(11)	$C7-O4-Zr1^2$	128.2(3)	
01-Zr1-C2	152.64(12)	$Zr1-O2-Zr1^{1}$	103.78(12)	

01-Zr1-C3	151.80(14)	C7-O3-Zr1	127.6(3)
O1-Zr1-C6	152.53(16)	S1–O7–Na1A ³	99.3(2)
O1-Zr1-C4	151.38(15)	S1-O8-Na-1A	137.3(3)
O1-Zr1-C5	151.53(13)	S1-O8-Na1A ³	91.81(18)
$O4^1$ – $Zr1$ – $Zr1^1$	75.00(8)	S1-O8-Na1B	132.9(5)
$O4^1$ – $Zr1$ – $Zr1^2$	113.08(8)	Na1A-O8-Na1A ³	67.8(3)
O4 ¹ -Zr1-C2	108.66(14)	C3-C2-Zr1	74.9(3)
O4 ¹ -Zr1-C6	78.56(14)	C2-C3-Zr1	73.0(3)
O4 ¹ -Zr1-C4	108.20(16)	C4-C3-Zr1	73.1(3)
$O4^1$ –Zr1–C5	78.54(15)	C2-C6-Zr1	74.6(3)
$O2^2$ -Zr1-Zr1 ²	38.11(7)	C5-C6-Zr1	74.2(3)
O2–Zr1–Zr1 ²	86.20(8)	C3-C4-Zr1	74.8(3)
$O2^2 - Zr1 - Zr1^1$	86.20(7)	C5-C4-Zr1	73.4(3)
O2–Zr1–Zr1 ¹	38.11(7)	C6-C5-Zr1	73.8(3)
$O2-Zr1-O4^{1}$	86.42(11)	C4-C5-Zr1	74.8(3)
$O2^2$ -Zr1-O4 ¹	151.10(11)	O7 ³ –Na1A–S1 ³	28.52(11)
$O2-Zr1-O2^2$	92.19(15)	O7 ³ –Na1A–O8 ³	57.28(19)
$O2^2$ –Zr1–O3	85.52(11)	O7 ³ –Na1A–Na1A ³	96.4(4)
O2-Zr1-O3	152.56(11)	O7 ³ –Na1A–O9B	96.5(4)
O2-Zr1-C2	132.26(13)	$O8^3$ -Na1A-S1 ³	28.99(10)
$O2^2$ -Zr1-C2	93.54(14)	O8–Na1A–S1 ³	123.9(3)
O2-Zr1-C3	104.11(14)	O8-Na1A-O7 ³	152.4(4)
$O2^2$ -Zr1-C3	78.80(13)	O8-Na1A-O8 ³	95.2(3)
$O2^2$ –Zr1–C6	125.76(15)	O8–Na1A–Na1A ³	62.4(2)
O2-Zr1-C6	120.21(15)	O8 ³ –Na1A–Na1A ³	49.8(2)
O2-Zr1-C4	79.34(13)	O8-Na1A-O10A	106.5(6)
$O2^2$ –Zr1–C4	99.86(15)	O8-Na1A-O9B	103.2(5)
O2-Zr1-C5	88.43(15)	Na1A ³ –Na1A–S1 ³	74.0(3)
$O2^2$ -Zr1-C5	130.31(15)	O10A–Na1A–S1 ³	116.1(5)
O3–Zr1–Zr1 ¹	114.48(8)	O10A-Na1A-O7 ³	94.8(5)
O3–Zr1–Zr1 ²	75.18(8)	O10A–Na1A–O8 ³	137.9(6)
$O3-Zr1-O4^{1}$	82.69(11)	O10A-Na1A-Na1A ³	168.7(6)
O3-Zr1-C2	75.17(13)	O10A-Na1A-O9B	83.4(9)
O3-Zr1-C3	102.25(14)	O9B-Na1A-S1 ³	116.0(3)
O3-Zr1-C6	82.16(15)	O9B-Na1A-O8 ³	126.7(6)
O3-Zr1-C4	128.01(13)	O9B-Na1A-Na1A ³	96.7(7)
O3-Zr1-C5	113.75(15)	O10B-Na1B-O8	135.4(13)
C2–Zr1–Zr1 ²	124.17(12)	O9A-Na1B-O8	90.4(9)
C2-Zr1-Zr1 ¹	170.26(11)	O9A-Na1B-O10B	122.9(17)
C2-Zr1-C3	32.07(16)	O7–S1–Na1A ³	52.18(17)

C2-Zr1-C4	52.99(15)	O8–S1–Na1A ³	59.19(18)
C3–Zr1–Zr1 ^{2}	116.77(11)	$C5-Zr1-Zr1^2$	166.81(13)
C3–Zr1–Zr1 ¹	138.97(11)	C5–Zr1–Zr1 ¹	120.37(13)
C6–Zr1–Zr1 ²	152.53(13)	C5-Zr1-C2	53.24(17)
C6–Zr1–Zr1 ¹	146.19(13)	C5Zr1C3	53.16(16)
C6-Zr1-C2	32.28(17)	C5-Zr1-C4	31.78(18)
C6-Zr1-C3	53.19(16)	C4–Zr1–Zr1 ¹	117.45(11)
C6-Zr1-C4	52.78(18)	C4–Zr1–Zr1 ²	135.08(14)
C6-Zr1-C5	32.02(18)	C4-Zr1-C3	32.12(16)

Symmetry codes: ¹1+Y-X, 1-X, +Z;²1-Y, +X-Y, +Z;³4/3-X, 2/3-X+Y, 7/6-Z;⁴1/3+Y, -1/3+X, 7/6-Z

Supporting references:

- 1 G. Liu, Z. Ju, D. Yuan, M. Hong, Inorg. Chem. 2013, 52, 13815
- 2 A. L. Myers and J. M. Prausnitz, *AIChE J.*, 1965, **11**, 121.
- 3 Q.-H. Yue, X.-H. Shao and D.-P. Cao, Acta Physico-Chimi Sinica, 2007, 23, 1080.