Electronic Supplementary Information

Li₂O-B₂O₃-GeO₂ glass as a high performance anode material for rechargeable lithium-ion batteries

Seung Ho Choi,^a Seung Jong Lee,^b Hye Jin Kim,^{b,c} Seung Bin Park,^{a,*} Jang Wook Choi^{c*}

^aDepartment of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daehakro 291, Yuseong-gu, Daejeon 34141, Republic of Korea.

^bGraduate School of Energy, Environment, Water, and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), Daehakro 291, Yuseong-gu, Daejeon 34141, Republic of Korea.

^cSchool of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea

Corresponding authors: E-mail: SeungBinPark@kaist.ac.kr, jangwookchoi@snu.ac.kr

Fig. S1 Size distribution of the LBGO glass powder from low magnification SEM analysis.

Fig. S2 Morphologies of LBO glass prepared by one-pot spray pyrolysis. (a,b) SEM images. (c,d) TEM images.

Fig. S3 Morphologies of GeO₂ powders prepared by one-pot spray pyrolysis. (a,b) SEM images. (c,d) TEM images. (e) HR-TEM image. (f) SAED pattern.

Fig. S4 Morphologies of Ge-rich LBGO glass with a molar ratio of $Li_2O : B_2O_3 : GeO_2$ = 1 : 2 : 4. (a,b) SEM images. (c,d) TEM images.

Fig. S5 Charge-discharging profiles during cycling. (a) The first charge-discharge profiles of the LBGO, LBO, and GeO₂ electrodes. Charge-discharge profiles of (b) the LBO glass and (c) the GeO₂ electrodes during cycling at a constant current density of 1 A g^{-1} . (d) Charge-discharge profiles of the LBGO glass electrode at different current densities.

that of reported glass materials.				
Typical examples	Synthetic method	Current density (mA g ⁻¹)	Reversible capacity (mA h g ⁻¹)/ cycle number	Reference
SnO-P ₂ O ₅ glass	solid-state and quenching	2.4 (mA cm ⁻²)	540/50	28
1.5B ₂ O ₃ -SnO _x /CNFs	electrospinnin g	200 2000	670.2/100 300.2/-	29
SnB ₂ O ₄ glass	solid-state and quenching	0.1 (mA cm ⁻²)	525/40	30
$Sn_2P_2O_7$ nanodisk	quenching hydrothermal	350	547/220	45
SnO ₂ –B ₂ O ₃ core–shell nanocomposite	molten-salt decomposition	156	537/100	46
SnO/P ₂ O ₅ (67/33mol%)	melt– quenching technique	1.0 (mA cm ⁻²)	356/20	47
GeO ₂ glass	solid-state and quenching	134	310/30	48
GeS ₂ glass	solid-state and quenching	134	414.8/30	48
Li ₂ O-B ₂ O ₃ -GeO ₂ glass	spray pyrolysis	1000	827.6/150	this work
		10000	623	

Table S1. Comparison of the electrochemical performance of $Li_2O-B_2O_3$ -GeO₂ electrode with that of reported glass materials.

28 H. Yamauchi, G. Park, T. Nagakane, T. Honma, T. Komatsu, T. Sakai and A. Sakamoto, *J. Electrochem. Soc.*, 2013, 160, A1725–A1730.

29 Q. Li, J. L. Lan, Y. Liu, Y. Yu and X. Yang, RSC Adv., 2015, 5, 89099–89104.

- 30 C. Gejke, L. Börjesson and K. Edström, *Electrochem. Commun.*, 2003, 5, 27–31.
- 45 S. Lee and J. Cho, Chem. Commun., 2010, 46, 2444–2446.
- 46 G. Xia, N. Li, D. Li, R. Liu, N. Xiao and D. Tian, Mater. Lett. 2012, 79, 58-60.
- 47 A. Hayashi, T. Konishi, K. Tadanaga, T. Minami and M. Tatsumisago, *J. Non-Crystalline Solids*, 2004, **345&346**, 478–483.
- 48 Y. Kim, H. Hwang, K. Lawler, S. W. Martin and J. Cho, *Electrochim. Acta*, 2008, **53**, 5058–5064.

Fig. S6 Electrochemical impedance spectroscopy (EIS) spectra of the LBGO and GeO₂ electrodes before cycling.

Fig. S7 Electrochemical properties of the GeO_2 and $Li_2O-2B_2O_3-4GeO_2$ electrodes at a constant current density of 1 A g⁻¹.