Supporting information

Uniformly Core-shell Nanobiscuits of Fe₇S₈@C for Lithium-ion and Sodium-ion Batteries with Excellent Performance

Ludi Shi^{a+}, Dongzhi Li^{a,b+}, Jiali Yu^a, Huichao Liu^{a,b}, Yong Zhao^{a,b}, Hailin Xin^a,

Yemao Lina, Chengdong Lina, Cuihua Lia, Caizhan Zhua*

^aDepartment of Chemistry and Environmental Engineering, Shenzhen University,

Shenzhen, Guangdong, 518060, P. R. China.

^bInstitute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.

⁺These authors contribute equally to this manuscript.

*Corresponding author. E-mail address: <u>czzhu@szu.edu.cn</u> (C. Zhu)

Types of materials	Types of	Voltage	Cycling	Reference
i ypes of materials	battery	range(V)	performance	Kelerenee
CoS ₂ Nanobubble Hollow Prisms			737 mAh g ⁻¹ after	
	LIBs	0.05-3	200 cycles at 1 A	1
			g ⁻¹	
CoS/C	SIBs	0.01-3	542 mAh g ⁻¹ after	
			2000 cycles at 1	2
			A g ⁻¹	
Fe ₇ S ₈ @C NCs	SIBs	0.08-3	447 mAh g ⁻¹ after	2
			1000 cycles at	3

Table S1. A comparison of electrochemical properties of metal sulfides for LIBs and SIBs.

			180 mA g ⁻¹	
Hollow nanocubes PBC1-1S	SIBs	0.01-3	87 mAh g ⁻¹ after 150 cycles at 500 mA g ⁻¹	4
NiS nanoplates	LIB	0.005-3	468 mAh g ⁻¹ after 100 cycles at 1 A g ⁻¹	5
	SIBs	0.005-3	166 mAh g ⁻¹ after 100 cycles at 1 A g ⁻¹	
CoS ₂ /NCNTF electrode	LIBs	0.05-3	973 mAh g ⁻¹ after 160 cycles at 1A g ⁻¹	6
Fe ₃ O ₄ /Fe _{1-x} S@C@MoS ₂ nanosheets	LIBs	0.01-3	1142 mAh g^{-1} after 700 cycles at 1A g^{-1}	7
	SIBs	0.01-3	402 mAh g ⁻¹ after 1000 cycles at 1A g ⁻¹	/
FeS ₂ @C yolk-shell nanoboxes	SIBs	0.1-2	330 mAh g ⁻¹ after 800 cycles at 2A g ⁻¹	8
Mesoporous NiS ₂ Nanospheres	SIBs	0.01-2.9	319 mAh g ⁻¹ after 1000 cycles at 500 mA g ⁻¹	9
Mag /grg Cg	LIBs	0.01-3	772 mAh g ⁻¹ after 200cycles at 750 mA g ⁻¹	10
M05 ₂ /Sn5 ₂ -G5	SIBs	0.01-3	546 mAh g ⁻¹ after 150 cycles at 1.5 A g ⁻¹	10
TiO ₂ @NC@MoS ₂	LIBs	0.01-3	590 mAh g ⁻¹ after 200 cycles at 1 A g ⁻¹	11
EG-MoS ₂	LIBs	0.01-3	$\begin{array}{ccc} 1250 & \text{mAh} & \text{g}^{-1} \\ \text{after } 150 & \text{cycles at} \\ 1 & \text{A} & \text{g}^{-1} \end{array}$	12
	SIBs	0.01-3	509 mAh g ⁻¹ after 250 cycles at 1 A g ⁻¹	
spongy CoS ₂ /C	LIBs	0.01-3	610 mAh g ⁻¹ after 120 cycles at 500 mA g ⁻¹	13

	SIBs	0.01-3	358.7 mAh g^{-1} after 60 cycles at 500 mA g^{-1}	
SnS@C nanotubes	SIBs	0.01-3	$\begin{array}{c} 440.3 \text{ mAh } \text{g}^{-1} \\ \text{after 100 cycles at} \\ 200 \text{ mA } \text{g}^{-1} \end{array}$	14
ce-V ₅ S ₈ -C	SIBs	0.01-3	496 mAh g ⁻¹ after 500 cycles at 1 A g ⁻¹	15
Fe _{1-x} S@CNTs	SIBs	0.01-2.3	449.2 mAh g ⁻¹ after 200 cycles at 500 mA g ⁻¹	16
Fe ₇ S ₈ @C NCs	SIBs	0.08-3	447 mAh g ⁻¹ after 1000 cycles at 180 mA g ⁻¹	17
FeS@CNS	LIBs	0.01-3	703 mAh g ⁻¹ after 150 cycles at 1 A g ⁻¹	18
G@FeS-GNRs	LIBs	0.01-3	536 mAh g ⁻¹ after 100 cycles at 400 mA g ⁻¹	19
FeS ₂ /CNT	SIBs	0.8-3	394 mAh g ⁻¹ after 400 cycles at 200 mA g ⁻¹ ; 309 mAh g ⁻¹ after 1800 cycles at 1 A g ⁻¹	20
E. S. O.C.	LIBs	0.01-3	781 mAh g⁻¹ after 500 cycles at 1 A g ⁻¹ , 547.3 mAh g⁻ ¹ after 600 cycles at 5 A g ⁻¹	This work
Fe ₇ S ₈ @C	SIBs	0.01-3	596 mAh g⁻¹ after 500 cycles at 1 A g ⁻¹ , 530.8 mAh g⁻ ¹ after 1000 cycles at 5 A g ⁻¹	This work

	$Li^+/Rct(\Omega)$	$Na^+/Rct(\Omega)$
Before cycle	52.25	10.05
After cycle	18.62	7.645

Fig. S1. XRD spectra of the pure $Fe_2O_{3.}$

Fig. S2. TEM images of (a) Fe_2O_3 and (b) Fe_2O_3 @PDA.

Fig. S3. TGA curves of $Fe_7S_8@C$.

Fig. S4. The nitrogen adsorption/desorption isotherm plots. Micropore (inset) size distribution of $Fe_7S_8@C$.

Fig. S5. Long-term cyclic performance at current densities of 0.1 A g⁻¹ (a) and 5 A g⁻¹ (b) for LIBs.

Fig. S6. Long-term cyclic performance at current densities of 0.1 A g⁻¹ (a) and 5 A g⁻¹ (b) for SIBs.

Fig. S7. TEM images of Fe_7S_8 @C nanobiscuits electrodes after 1st cycle (a, c) and 500th cycle (b, d) at the current density of 1 A g⁻¹ for (a, b) LIBs and (c, d) SIBs.

Fig. S8. Ex-situ HRTEM for LIBs (a) and SIBs (b) after first cycle, both batteries charge to 2 V.

Fig. S9. The fitted lines and ln (peak current) versus ln (scan rate) plots at different

oxidation (black) and reduction (red) state of (a) LIBs and (b) SIBs.

Reference

- 1 L. Yu, J. F. Yang, X. W. Lou, Angew, Chem. Int. Ed., 2016, 55, 13422-13426.
- 2 L. M. Zhou, K. Zhang, J. Z. Sheng, Q. Y. An, Z. L. Tao, Y. M. Kang, J. Chen, L.Q. Maia, *Nano Energy.*, 2017, **35**, 281-289.
- 3 M. J. Choi, J. S. Kim, J. K. Yoo, S. M Yim, J. B, Jeon, Y. S. Jung, Small., 2017, 1702816.
- 4 J. W. Chen, S. H. Li, V, Kumar, P. S. Lee, Adv. Energy Mater., 2017, 1700180.
- 5 H. S. Fan, H. Yu, X. L. Wu, Y. Zhang, Z. Z Luo, H. W. Wang, Y. Y. Guo, S. Madhavi, Q. Y. Yan, ACS Appl. Mater. Interfaces., 2016, **8**, 25261-25267.
- 6 J. T. Zhang, L. Yu, X. W. Lou, Nano Res., 2017, 10, 4298-4304.
- 7 Q. C. Pan, F. H. Zheng, X. Ou, C. H. Yang, X. H. Xiong, Z. H. Tang, L. Z. Zhao, M. L. Liu, ACS Sustainable Chem. Eng., 2017, 5, 4739-4745.
- 8 Z. M. Liu, T. C. Lu, T. Song, X. Y. Yu, X. W. Lou, U. Paik, *Energy Environ. Sci.*, 2017, **10**, 1576-1580.
- 9 R. M. Sun, S. J. Liu, Q. L. Wei, J. Z. Sheng, S. H. Zhu, Q. Y. An, L. Q. Mai, Small., 2017, 13, 1701744.
- 10 Y. Jiang, Y. B. Guo, W. J. Lu, Z. Y. Feng, B. J. Xi, S. S. Kai, J. H. Zhang, J. K. Feng, S. L. Xiong, *ACS Appl. Mater. Interfaces.*, 2017, **9**, 27697-27706.
- 11 S. B. Wang, B. Y. Guan, L. Yu, X. W. Lou, Adv. Mater., 2017, 29, 1702724.
- 12 G. Wang, J. Zhang, S. Yang, F. X. Wang, X. D. Zhuang, K. Müllen, X. L. Feng, *Adv. Energy Mater.*, 2017, 1702254.
- 13 Y. H. Zhang, N. N. Wang, C. H. Sun, Z. X. Lu, P. Xue, B. Tang, Z. C. Bai, S. X. Dou, Chem. Eng. J., 2018, **332**, 370-376.
- 14 P. L. He, Y. J. Fang, X. Y. Yu, X. W. Lou, Angew. Chem. Int. Ed., 2017, 56, 12202-12205.
- 15 C. H. Yang, X. Ou, X. H. Xiong, F. H. Zheng, R. Z. Hu, Y. Chen, M. L. Liu, K. Huang, *Energy Environ. Sci.*, 2017, **10**, 107-113.
- 16 Y. Xiao, J. Y. Hwang, I. Belharouak, Y. K. Sun, ACS Energy Lett., 2017, 2, 364-372.

17 M. J. Choi, J. s. Kim, J. K. Yoo, S. Yim, J. Jeon, Y. S. Jung, Small, 2018, 14, 1702816.

- 18 Y. X. Xu, W. Y. Li, F. Zhang, X. L. Zhang, W. J. Zhang, C. S. Lee, Y. B. Tang. *J. Mater. Chem. A*, 2016, **4**, 3697-3703.
- 19 L. Li, C. T. Gao, A. Kovalchuk, Z. W. Peng, G. D. Ruan, Y. Yang, H. L. Fei, Q. F. Zhong, Y. L. Li, J. M. Tour, *Nano Res.*, 2016, **9**, 2904-2911.
- 20 Y. Y. Chen, X. D. Hua, B. Evanko, X.H. Sun, X. Li, T. Y. Hou, S. Cai, C. M. Zheng, W. B. Hu, G. D. Stucky, *Nano Energy* 2018, **46**, 117-127.