Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting information

Immobilization of tungsten disulfide nanosheets on active carbon fiber as electrode materials

for high performance quasi-solid-state asymmetric supercapacitors

Xiaoming Qiu, Luning Wang, Li-Zhen Fan*

Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Advanced

Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China

*Corresponding author: E-mail: fanlizhen@ustb.edu.cn

Fig. S1 Pore size distribution of pure ACF, WS_2 and WS_2/ACF calculated from the absorption–desorption isotherm using density functional theory (DFT) method.

Fig. S2 XPS spectra of WS_2/ACF (a) and pure WS_2 (b). High resolution XPS spectra of W4f (c) and S2p (d) for pure WS_2 .

Fig. S3 CV curves of pure WS₂ at different scan rates (a), plots of the current at different scan rates (b and c), galvanostatic charge-discharge curves of ACF, WS₂, and WS₂/ACF at 0.2 A g⁻¹ (d), galvanostatic charge-discharge curves of WS₂ at different current densities (e), cyclic performance of WS₂ and WS₂/ACF at 3 A g⁻¹ in 1 mol L⁻¹ KOH (f).

Fig. S4 (c) galvanostatic charge-discharge curves of pure WS₂ and WS₂/ACF at 0.2 A g⁻¹, (d) rate performance cuvers of pure WS₂ and WS₂/ACF.

Fig. S5 EIS curves of WS₂/ACF and WS₂ in 1 mol L⁻¹ KOH.

Fig. S6 The capacity retention during galvanostatic charge-discharge cycling of the

 $WS_2/ACF//ACF$ at 3 A g⁻¹ in 1 mol L⁻¹ KOH.

Fig. S7 The capacity retention during galvanostatic charge-discharge cycling of the $WS_2/ACF//ACF$ at 3 A g⁻¹ in PVA/KOH.

SI-7

	Materials	Current density	Capacitance	Electrolyte	Reference
		(A g ⁻¹)	(F g ⁻¹)		
1	PPy/MoS ₂	1	553.7	1 mol L ⁻¹ KCl	1
2	MoS ₂ /graphene nanosheets	2	320	1 mol L ⁻¹ Na ₂ SO ₄	2
3	s-MoS ₂ /carbon nanospheres	0.5	231	1 mol L ⁻¹ Na ₂ SO ₄	3
4	MoS ₂ /N-doped graphene	0.25	245	1 mol L ⁻¹ KOH	4
5	Porous tubular C/MoS ₂	1	210	3 mol L ⁻¹ Na ₂ SO ₄	5
6	3D graphene/MoS ₂	1	410	1 mol L ⁻¹ Na ₂ SO ₄	6
7	WS_2	0.5	34	Phosphate buffer	7
				solution (pH 7.4)	
8	WS ₂ -PANI	0.2	382	2 mol L ⁻¹ H ₂ SO ₄	8
9	WS ₂ /RGO	0.5	350	1 mol L ⁻¹ H ₂ SO ₄	9
10	WS ₂ /ACF	1	502	1 mol L ⁻¹ H ₂ SO ₄	This work
11	WS ₂ /ACF	1	600	1 mol L ⁻¹ KOH	This work

Table S1 Specific capacitance of metal sulfide based composite

References

- [1]. G. Ma, H. Peng, J. Mu, H. Huang, X. Zhou and Z. Lei, J. Power Sources, 2013, 229, 72-78.
- [2]. X. Yang, H. Niu, H. Jiang, Q. Wang and F. Qu, J. Mater. Chem. A, 2016, 4, 11264-11275.
- [3]. T. N. Y. Khawula, K. Raju, P. J. Franklyn, I. Sigalas and K. I. Ozoemena, J. Mater. Chem. A,

2016, 4, 6411-6425.

- [4]. B. Xie, Y. Chen, M. Yu, T. Sun, L. Lu, T. Xie, Y. Zhang and Y. Wu, Carbon, 2016, 99, 35-42.
- [5]. B. Hu, X. Qin, A. M. Asiri, K. A. Alamry, A. O. Al-Youbi and X. Sun, *Electrochim. Acta*, 2013, 100, 24-28.
- [6]. T. Sun, Z. Li, X. Liu, L. Ma, J. Wang and S. Yang, J. Power Sources, 2016, 331, 180-188.
- [7]. C. C. Mayorga-Martinez, A. Ambrosi, A. Y. S. Eng, Z. Sofer and M. Pumera, *Electrochem. Commun.*, 2015, 56, 24-28.
- [8]. K. Gopalakrishnan, S. Sultan, A. Govindaraj and C. N. R. Rao, Nano Energy, 2015, 12, 52-58.
- [9]. S. Ratha and C. S. Rout, ACS Appl. Mater. Interfaces, 2013, 5, 11427-11433.