Supporting Information

High-capacity cathodes for magnesium lithium chlorine tri-ion batteries through chloride intercalation in layered MoS₂: a computational study

Zhuo Wang, and Guosheng Shao *

Compositions	Voltage v.s. Li (V)	Capacity (mAhg ⁻¹)	
Li _{0.25} MoS ₂	2.5	41.4	
Li _{0.5} MoS ₂	1.54	82.0	
Li _{0.75} MoS ₂	1.49	121.6	
LiMoS ₂	1.35	160.5	
Li _{1.5} MoS ₂	0.37	-	

Table S1. Voltages (v.s. Li) and capacities in the Li_xMoS₂ system

Table S2. Voltages (v.s. Mg) and capacities in the Mg_xMoS_2 or hybrid Mg^{2+}/Li^+ compounds with stable dT structures.

Compositions	Voltage v.s. Mg (V)	Capacity (mAhg ⁻¹)	
Mg _{0.25} MoS ₂	0.65	80.7	
Mg _{0.5} MoS ₂	0.18	155.8	
$Mg_{0.75}MoS_2$	0.06	-	
Li _{0.25} Mg _{0.25} MoS ₂	1.08	119.8	
$Li_{0.5}Mg_{0.25}MoS_2$	0.9	160.0	

Table S3. Voltage (*v.s.* Mg) and capacities in $Li_xMg_yMoS_2Cl_{0.5}$ compounds with stable dT structures.

Compositions	Voltage v.s. Mg (V)	Capacity (mAhg ⁻¹)	
Li _{0.5} MoS ₂ Cl _{0.5}	2.4	147.9	
Mg _{0.25} MoS ₂ Cl _{0.5}	1.9	145.9	
$Li_{0.25}Mg_{0.25}MoS_2Cl_{0.5}$	1.1	180.6	
Li _{0.5} Mg _{0.25} MoS ₂ Cl _{0.5}	0.92	214.7	
LiMoS ₂ Cl _{0.5}	0.85	217.6	
Mg _{0.5} MoS ₂ Cl _{0.5}	0.8	211.9	
Li _{0.25} Mg _{0.5} MoS ₂ Cl _{0.5}	0.75	244.9	
Li _{0.5} Mg _{0.5} MoS ₂ Cl _{0.5}	0.67	277.4	

Material	Electrolyte	Capacity	Voltage (V)	Morphology
	(mol)	(mAhg ⁻¹) at		
		0.1C *		
Expanded	0.25LiCl+0.25APC	300	1.2	Nanosheets ¹
MoS ₂ /graphene				
Expanded TiS ₂	0.2PY14Cl+0.25APC	239	0.7	Nanosheets ²
TiS ₂	0.1Mg(BH ₄) ₂ +1.0NaBH ₄	200	~1.1	Nanosheets ³
MoS ₂	1LiCl+0.4APC	243	1.1	Nanoflakes ⁴
TiO ₂	1.5LiBH ₄ +0.5Mg(BH ₄) ₂ /TG	140	1.15	Nanoparticles ⁵
Li ₄ Ti ₅ O ₁₂ /Graphen e	1.5LiBH4+0.4APC	147.5	~1.1	Micron-sized particles ⁶
Mo_6S_8	0.4LiCl+1APC	126	~1.7	Particles ⁷
Ti ₃ C ₂ T _x /CNT	0.4LiCl+0.5APC	105	-	Micron-sized
				delaminated
				flakes ⁸

 Tables S4 Reported data on performance of different cathode materials.

* Reported experimental data were based on active cathode (e.g. sulphide) materials

in composite cathodes.

1.X. Fan, R. R. Gaddam, N. A. Kumar and X. S. Zhao, Adv. Energy Mater., 2017, 1700317.

2. H. D. Yoo, Y. Liang, H. Dong, J. Lin, H. Wang, Y. Liu, L. Ma, T. Wu, Y. Li, Q. Ru, Y. Jing, Q. An, W. Zhou, J. Guo, J. Lu, S. T. Pantelides, X. Qian and Y. Yao, *Nat. Commun.*, 2017, **8**, 339.

3.X. Bian, Y. Gao, Q. Fu, S. Indris, Y. Ju, Y. Meng, F. Du, N. Bramnik, H. Ehrenberg and Y. Wei, J. Mater. Chem. A, 2017, 5, 600-608.

4. Yanming Ju, Yuan Meng, Yingjin Wei, Xiaofei Bian, Qiang Pang, Yu Gao, Fei Du, Bingbing Liu and G. Chen, *Chem. Eur. J.*, 2016, **22**, 18073 – 18079.

5. S. Su, Z. Huang, Y. NuLi, F. Tuerxun, J. Yang and J. Wang, Chem. Commun., 2015, 51, 2641-2644.

6. Q. Miao, Y. NuLi, N. Wang, J. Yang, J. Wang and S.-i. Hirano, RSC Advances, 2016, 6, 3231-3234.

7. Y. Cheng, Y. Shao, J. G. Zhang, V. L. Sprenkle, J. Liu and G. Li, Chem. Commun., 2014, 50, 9644--9646.

^{8.} A. Byeon, M. Q. Zhao, C. E. Ren, J. Halim, S. Kota, P. Urbankowski, B. Anasori, M. W. Barsoum and Y. Gogotsi, *ACS Appl. Mater. Interfaces*, 2017, 9, 4296-4300.

Figure S1 Low energy structural configurations from USPEX global searching: (a) single layer MoS_2 (2H phase), (b) $Li_{0.5}MoS_2$, (c) $LiMoS_2$, (d) $Mg_{0.25}MoS_2$, (e) $Mg_{0.5}MoS_2$, (f) $Li_{0.5}Mg_{0.25}MoS_2$, and (g) $Li_{0.25}Mg_{0.5}MoS_2$. (b-g) exhibit characteristic layered structure of dT phases.

Figure S2 Low-energy structural configurations from USPEX global searching, for (a) $Li_{1.5}MoS_2$, (b) $Li_{0.5}Mg_{0.5}MoS_2$, and (c) $Mg_{0.75}MoS_2$. Higher level of intercalation of alkali and/or alkali-earth metal ions leads to loss of layered structures.

Figure S3 Reference AIMD simulation for the well-established LIB cathode $LiCoO_2$: (a) Layered structure of $LiCoO_2$, (b) Li^+ diffusion coefficient in $LiCoO_2$, and (c) trajectory map of Li^+ ions from the particle density distribution at 1200K.

Figure S4 The trajectory of ions from AIMD at 1200K from the particle density distribution: Trajectories of (a) Cl^- and (b) Mg^{2+} in $Mg_{0.5}MoS_2Cl_{0.5}$; Trajectories of (c) Cl^- , (d) Mg^{2+} , and (e) Li^+ in $Li_{0.25}Mg_{0.25}MoS_2Cl_{0.5}$.

