Supporting Information

Nitrogen-Doped Porous Carbon from Biomass: Highly Efficient Trifunctional

Electrocatalyst for Oxygen Reversible Catalysis and Nitrogen Reduction

Reaction

Xiaoxuan Yang, Ke Li, Dongming Cheng, Wei-Lin Pang, Jiaqi Lv, Xinyu Chen, Hong-Ying Zang*, Xing-Long Wu*, Hua-Qiao Tan, Yong-Hui Wang and Yang-Guang Li*

Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China.

*Corresponding authors. E-mail: <u>zanghy100@nenu.edu.cn</u> (Hong-Ying Zang)

Fig. S1 X-ray diffraction of NCF-900.

Fig. S2 XPS survey of NCF-900.

Fig. S3 Cyclic voltammograms in N2-saturated and O2-saturated 0.1 M KOH at room temperature and a scan rate

of 5 mV s $^{-1}$ for NCF-900 electrocatalysts.

Fig. S4 LSV curves of (a) NCF-800, (b) NCF-850, (c) NCF-950 electrode with a sweep rate of 5 mV s⁻¹ at the

different rotation rates in O2-saturated 0.1 M KOH solution.

Fig. S5 The Tafel slope of NCF-900 and Pt/C.

Fig. S6 RRDE polarization curves for NCF-900 in O2-saturated 0.1 M KOH solution at 1600 rpm.

Fig. S7 Current-time (1-t) curves of NCF-900 and Pt/C in 0.1 M KOH with an addition of 1 M methanol.

Fig. S8 Durability tests of the NCF-900 catalyst in 1 M KOH electrolyte.

Fig. S9 a) Discharge and charge cycling of NCF-900 and Pt/C catalyst and b) Photograph of three LEDs powered

by two Zn-air devices using NCF-900.

Fig. S10 Chrono-amperometry results towards NRR using NCF-900 material.

 Table S1 Comparison of ORR performance of our NCNM-800 materials with other reported heteroatom-doped carbon electrocatalysts.

Material	S _{BET} (m ² g)	Electrolyte	Onset potential (V)	n	Reference
B-rGO	541	0.1 M KOH	-0.05 (Ag/AgCl)	4.16	Green Chem., 2015, 17 , 3552–3560.
Nitrogen-doped carbon aerogels	450	0.1 M KOH	~-0.2 (Ag/AgCl)	~4	Green Chem., 2013, 15 , 2514–2524.
2D Nitrogen-doped Hierarchically Porous Carbon	2620	0.1 M KOH	0.945		<i>Appl. Catal. B</i> , 2017, 209 , 447–454
3D Interconnected Hierarchically Porous N-doped Carbon	2600	0.1 M KOH	0.98	3.75	<i>Appl. Catal. B</i> , 2017, 210 , 57–66.
Boron-Doped Graphene	200	0.1 M NaOH	~-0.1 (Ag/AgCl)	3.6~4.2	Adv. Energy Mater., 2015, 5, 1500658.
Plasma-etched Carbon Cloth		0.1 M KOH	0.76 (RHE)	3.50	Adv. Mater., 2017, 29 , 1606207.

5

N and P co-doped mesoporous nanocarbon foams	1663	0.1 M KOH	0.94 (RHE)	~4.0	Nat. Nanotechnol., 2015, 10 , 444–452.
N-rGO	185	0.1 M KOH	-0.06 (SCE)	3.89	Nano Energy, 2014, 3 , 55–63.
N-carbon nanosheet	589	0.1 M KOH	0.72 (RHE)	3.67–3.91	Angew. Chem., Int. Ed., 2014, 53 , 1596–1600.
N-rGO aerogel	617	0.1 M KOH	-0.05 (Ag/AgCl)	3.66–3.92	Small, 2015, 11 , 1423–1429.
N-rGO		0.1 M KOH	-0.13 (Ag/AgCl)	3.75	J. Chem. Sci., 2016, 128 , 339–347.
S-rGO	2129	0.1 M KOH	1.01 (RHE)	3.8	Chem. Commun., 2014, 50 , 6382–6385.
S-rGO/carbon black		0.1 M KOH	-0.15 (Ag/AgCl)	3.84	<i>Electrochim. Acta</i> , 2014, 142 , 51–60.
S-rGO	496	0.1 М КОН	-0.40 (SCE)	3.13	Nanoscale, 2014, 6 , 13740–13747.
BN-graphene nanoribbons	875	0.1 M KOH	-0.1 (Ag/AgCl)	~3.9	Chem. Mater., 2015, 27 , 1181–1186.

SN-graphene	153	0.1 M KOH	-0.09 (Ag/AgCl)	2.9–3.2	Adv. Mater., 2014, 26 , 6186–6192.
SN-carbon	653	0.1 M KOH	0.85 (RHE)	3.82	Carbon, 2014, 69 , 294–301.
SN-mesoporous carbon	1100	0.1 M NaOH	-0.05 (Ag/AgCl)	3.1-4.0	ACS Appl. Mater. Interfaces, 2013, 5 , 12594–12601.
SN-graphene	800	0.1 M NaOH	-0.1 (Ag/AgCl)	4	J. Mater. Chem. A, 2016, 4 , 6014–6020.
SNP-rGO	301.6	0.1 M KOH	-0.03 (Ag/AgCl)	~4.0	<i>Carbon</i> , 2014, 78 , 257–267.
Carbon Nanotubes/Heteroatom-d oped Carbon		0.1 M KOH	0.92	~4.0	Angew. Chem. Int. Ed., 2014, 53 , 4102–4106.
N,P-codoped ordered mesoporous carbon	1110	0.1 М КОН	0.92	3.7	Angew. Chem. Int. Ed., 2015, 54 , 9230–9234.
Triazine-Based Frameworks	2237	0.1 M KOH	0.86	3.7	Adv. Mater., 2015, 27 , 3190–3195.
NCMT-1000 (3D)	2358	0.1 M KOH	1.05	~4.0	Energy Environ. Sci., 2016, 9, 3079–3084.

N and P codoped mesoporous nanocarbon	1663	0.1 M HClO ₄	0.83	3.8	Nat. Nanotechnol., 2015, 10 , 444–452.
N doped carbon nanosheets	589	0.5 M H ₂ SO ₄	0.72	3.67-3.91	Angew. Chem. Int. Ed., 2014, 53 , 1570–1574.
Sulfur and Nitrogen Codoped Carbon Tubes	500	0.5 M H ₂ SO ₄	0.851	3.86–3.96	<i>Chem. Eur. J.</i> , 2016, 22 , 10326–10329
NCS-800	646	0.1 M KOH	~0.8	3.90–3.97	Energy Environ. Sci., 2014, 7
		0.5 M H2SO4	0.725	3.90–3.98	4095-4103.
N-doped Amorphous Carbon	1072	0.1 M KOH	0.211 V (SCE)	3.7	Carbon, 2017, 114 , 679–689.
3D nitrogen-doped carbon nanotube		0.1 M KOH	0.925 V	~4.0	Nano Energy, 2017, 37 , 98–107.
Nitrogen and Oxygen dual-doped Carbon	1462.5	0.1 M KOH	-0.060 V (SCE)	~4.0	Nano Energy, 2017, 33 , 334–342.
Nitrogen-doped Carbide-derived Carbon	2024	0.1 M KOH	-0.15 V (Ag/AgCl)	3.5	Carbon, 2017, 113 , 159–169.

N-doped carbon foams	1547.13	0.1 M KOH	1.055	~4	This work
Nitrogen-doped graphene	741	0.1 M KOH	0.72 V	3.75–3.88	Nano Res., 2017, 10 , 305–319.
N-doped carbon	164.34	0.1 M KOH	0.759 V	3.7	J. Mater. Chem. A, 2017, 5 , 2073–2082.

Table S2 Comparison study of some recently reported bi-functional ORR/OER catalysts in alkaline electrolyte.

	OER	ORR	ΔΕ		
Catalyst	Ej=10	E1/2	(Ej=10 -	Electrolyte	Reference
	(V vs. RHE)	(V vs. RHE)	E1/2) (V)		
MaQ Eilar	1.77	0.72	1.04		J. Am. Chem. Soc.
MinO _x Film	1.//	0.73	1.04	0.1 M KOH	2010, 132, 13612
Co ₃ O ₄ /N-doped	1.54	0.92	0.71		Nat. Mater. 2011,
graphene	1.54	0.83	0.71	ТМКОН	10, 780
	1.90	0.70	1.01		Adv. Mater.
H-Pt/CalvinO ₃	1.80	0.79	1.01	0.1 M KOH	2014, 26, 2047
Mn _x O _y /N-doped	1 69	0.91	0.97		Angew. Chem. Int.
carbon	1.08	0.81	0.87	0.1 M KOH	Ed. 2014, 53, 8508
CoO/N-doped	1.57	0.91	0.76		Energy Environ.
graphene	1.37	0.81	0.70	ТМКОП	Sci. 2014, 7, 609
E-ON C	1.71	0.92	0.88		Nano Energy
re@n-C	1./1	0.85	0.88	0.1 M KOH	2015, 13, 387
P-doped C ₃ N ₄ on	1.62	0.67	0.06		Angew. Chem. Int.
carbon-fiber paper	1.05	0.07	0.90	0.1 M KOH	Ed. 2015, 54, 4646
N-doped porous	1.94	0.82	1.02		Adv. Mater.
carbon fiber	1.04	0.82	1.02	0.1 M KOH	2016, 28, 3000
N, S-doped carbon	1.65	0.77	0.88		Nano Energy
nanosheet	1.05	0.77	0.88	0.1 M KOH	2016, 19, 373
	1.66	0.84	0.82	0.1 M KOH	Sci Adv
N-doped graphene	(1.59)	(0.84)	(0.75)	(1 M KOH)	2016 2:e1501122
					2010, 2.01301122
N-doped carbon	1.62	0.89	0.73	01MKOH	This work
foams	1.02	0.07	0.75		