Electronic Supplementary Information (ESI)

for

An *in situ* Approach for Synthesis of Gum Ghatti-*g*-Interpenetrating Terpolymer Network Hydrogel for High-performance Adsorption Mechanism Evaluation of Cd(II), Pb(II), Bi(III) and Sb(III)

Nayan Ranjan Singha,*^a Mrinmoy Karmakar,^a Manas Mahapatra,^a Himarati Mondal,^a Arnab Dutta,^a Mousumi Deb,^a Madhushree Mitra,^b Chandan Roy,^a and Pijush Kanti Chattopadhyay^b

^aAdvanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata - 700106, West Bengal, India, E-mail: drs.nrs@gmail.com

^bDepartment of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata - 700106, West Bengal, India.

Adsorption isotherm models

Adsorption isotherm data were fitted to the following isotherm models

$$q_e = q_{\max} \frac{k_L C_e}{1 + k_L C_e}$$
(S1)

$$q_e = k_F C_e^{1/n} \tag{S2}$$

$$q_e = q_{BET} \frac{k_1 C_e}{(1 - k_2 C_e)(1 - k_2 C_e + k_1 C_e)}$$
(S3)

Here, k_L , k_F , k_1 and k_2 are the corresponding isotherm constants and q_{max} , n and q_{BET} are the corresponding isotherm parameters.

Scheme S1. Systematic optimization

Fig. S1 In k_d vs 1/T plots for (a) Cd(II), (b) Bi(III), (c) Pb(II) and (d) Sb(III) and In k₂ vs 1/T plots for Cd(II)/Bi(III)/Pb(II)/Sb(III)

Page S3 of S8

Fig. S2 Pseudosecond order kinetics plots for (a) Cd(II), (b) Bi(III), (c) Pb(II) and (d) Sb(III) at different temperatures, $pH_i = 7$ and adsorbent dose = 0.02 g L⁻¹

AC (mg g^{-1})/pH_i/C₀ (mg L⁻¹) M(II) Name of the adsorbents Ref. /temperature (K) Cd(II) RGO^a-Fe(O)/Fe₃O₄ 1.91/7.0/2-6/298 S1 Dithiocarbamated-sporopollenin S2 7.09/7.0/15/293 Dead T. viride 10.95/6.0/26/320 S3 S4 **BiOBr** microsphere 11.70/7.0/29/298 S5 Polyaniline grafted chitosan 12.87/6.0/20-40/303 GO^b 14.90/5.6/-/-S6 Garden grass 17.60/4.0/50/303 S7 Functionalized graphene (GNS^{C8P}) 30.05/6.2/-/-S8 **GGAAAMAPA**^c S9 40.55/7.0/5-25/303 Si-DTC^d 43.47/7.0/100/298 S10 Novel magnetic nanocomposite hydrogel 53.20/5.5/20/298 S11 (m-CVP) GO-TiO₂ 72.80/5.6/-/-S6 Functionalized graphene (GNS^{PF6}) 73.42/6.2/-/-S8 Dithiocarbamate-anchored 82.20/7.0/50/293 S12 polymer/organosmectite composites Graphene oxide-Al13 89.74/6.0/10/298 S13 MGO^e 91.29/6.0/200/298 S14 Biomass of nonliving, dried brown 100.00/3.5/100/-S15 marine algae Sargassum natans, Fucus vesiculosus, and Ascophyllum nodosum Polyvinyl alcohol-chelating sponge 125.11/5.5/560/293 S16 CS-co-MMB-co-PAA^f 135.51/4.5-5.5/300/-S17 GO^b 167.50/6.0/-/333 S18 AC-Fe₃O₄-NPs modified with DBABT^g 185.22/6.0/5/-S19 Mesoporous MCM-41 210.96/7.0/250/298 S20 ANMP derived from PCBs^h 230.06/3.5/450/293 S21 **GTINIAMSAⁱ** 1477.83/7.0/500-800/293-323 TS[^] Pb(II) **Bare Malachite Nanoparticle** 7.20/5.0-6.0/10-100/-S22 11.50/5.7/10-50/303 S23 Kaolinite Jordanian kaolinite 13.32/5.0/50-400/295 S24 S23 Montmorillonite 31.10/5.7/10-50/303 Lemon peel 37.87/5.0/100-300/301 S25 **GGAAAMAPA**^c 41.98/7.0/5-25/303 S9 **IPNS**^j 54.86/7.0/5-30/303 S26 **APAN**^k 60.60/4.0/40-1000/303 S27 **GTINIAMSA**ⁱ 1568.81/7.0/500-800/293-323 TS^ Bi(III) Coconut shell activated carbon 54.35/-/250/299 S28 72.72/-/-/303 S29 Collagen fiber-immobilized bayberry tannin 87.00/5.0/1/-Activated carbon powder S30 D2EHPA^I 490.70/3.6/100-250/-S31 **GTINIAMSA**ⁱ 1582.38/7.0/500-800/293-323 TS[^] Sb(III) Carbon nanotubes 0.33/7.0/4/298 S32

Table S1 Comparison of the results obtained from literature

Blast-furnace-slag geopolymer	0.34/4.0-10.0/2/293	S33
Bentonite	0.37/6.0/0-4/298	S34
WAP ^m	1.16/2.8/10/298	S35
Polysiphonia lanosa	1.74/2.8/10/298	S35
QFGO ⁿ	2.88-6.09/-/20-60/298	S36
Hydrochar from swine solids	3.98/4.5/0-100/323	S37
Cyanobacteria Microcystis biomass	4.88/4.0/10/298	S38
Sargassum muticum	5.50/5.0/10/296	S39
Imprinted polymer	6.70/3.5–9.5/300/298	S40
Graphene	7.50/11.0/1-10/303	S41
Bonded silica gel	7.90/5.0–9.0/70/–	S42
Ferric hydroxide	18.50/7.0/–/–	S43
Activated carbon	24.00/-/-/-	S44
Sb(III)-imprinted sorbent	27.70/6.0/100/-	S45
Sb(III)-imprinted silica gel	32.40/3.5-6.5/100-600/298	S46
Diatomite	35.20/6.0/1000-20000/293	S47
Natural perlite	54.40/4.0/10/293	S48
Akaganeite	60.80/7.0/–/–	S49
Modified perlite	76.50/4.0/10/293	S48
Lichen (<i>Physcia tribacia</i>)	81.10/3.0/4000/293	S50
Synthetic manganite	95.00/3.0/–/–	S51
Mercapto-functionalized hybrid sorbent	108.80/3.0-8.0/100-800/298	S52
HFO°	113.96/4.0/–/–	S53
Fe-Mn binary oxide	120.53/5.0/-/-	S43
Orange waste	125.90/3.0/15/303	S54
K ₂ FeO ₄	129.93/4.0/1–10/–	S55
PAG ^p sorbent	158.20/6.0/40/313	S56
Fe-Mn binary oxide	197.80/3.0/24–244/293	S57
GTINIAMSA ⁱ	1518.09/7.0/500-800/293-323	TS^

^aReduced graphene oxide, ^bgraphene oxide, ^cguar gum-g-(acrylic acid-co-acrylamide-co-3-acrylamido propanoic acid), ^dsilicasupported dithiocarbamate adsorbent, ^eMagnetic graphene oxide, ^fa chitosan-based hydrogel, ^gactivated carbon magnetized with Fe₃O₄ nanoparticles modified with2-((2, 4-Dichloro-benzylidene)-amino)-benzenethiol, ^hactivated non-metallic Powder derived from printed circuit boards, ⁱgumghatti-g-N-isopropylacrylamide-co-2-acrylamido-co-sodiumpropanoate, ^jinterpenetrating network superadsorbent, ^kaminated polyacrylonitrile, ^Idi(2-ethylhexyl)phosphoric acid on the Amberlite XAD-1180, ^mascophyllum product, ⁿa composite of quartz sand coated with Fe₃O₄ and graphene oxide, ^ohydrous ferric oxide, ^ppolyamide-graphene and [^]this study.

REFERENCES

S1. P. Bhunia, G. Kim, C. Baik and H. Lee, Chem. Commun., 2012, 48, 9888-9890.

S2. N. Ünlü and M. Ersoz, Sep. Purif. Technol., 2007, 52, 461–469.

S3. R. M. Hlihor, M. Diaconu, F. Leon, S. Curteanu, T. Tavares and M. Gavrilescu, N. biotechnol., 2015,

32, 358–368.

S4. X. Wang, W. Liu, J. Tian, Z. Zhao, P. Hao, X. Kang, Y. Sang and H. Liu, *J. Mater. Chem. A*, 2014, **2**, 2599–2608.

S5. R. Karthik and S. Meenakshi, Chem. Eng. J., 2015, 263, 168–177.

S6. Y. C. Lee and J. W. Yang, J. Ind. Eng. Chem., 2012, 18, 1178-1185.

S7. A. H. Sulaymon, A. A. Mohammed and T. J. Al-Musawi, Int. J. Chem. Reac. Eng., 2014, 12, 477–486.

- S8. X. Deng, L. Lü, H. Li and F. Luo, J. Hazard. Mater., 2010, 183, 923–930.
- S9. N. R. Singha, M. Mahapatra, M. Karmakar, A. Dutta, H. Mondal and P. K. Chattopadhyay, *Polym. Chem.*, 2017, **8**, 6750–6777.
- S10. L. Bai, H. P. Hu, W. Fu, J. Wan, X. Cheng, L. Zhuge, L. Xiong and Q. Chen, *J. Hazard. Mater.*, 2011, **195**, 261–275.
- S11. Z. S. Pour and M. Ghaemy, *RSC Adv.*, 2015, 5, 64106–64118.
- S12. R. Say, E. Birlik, A. Denizli and A. Ersöz, Appl. Clay Sci., 2006, 31, 298–305.
- S13. L. Yan, Q. Zhao, T. Jiang, X. Liu, Y. Li, W. Fang and H. Yin, RSC Adv., 2015, 5, 67372–67379.
- S14. J. H. Deng, X. R. Zhang, G. M. Zeng, J. L. Gong, Q. Y. Niu and J. Liang, *Chem. Eng. J.*, 2013, 226, 189–200.
- S15. Z. R. Holan, B. Volesky and I. Prasetyo, *Biotechnol. Bioeng.*, 1993, 41, 819–825.
- S16. C. Cheng, J. Wang, X. Yang, A. Li and C. Philippe, J. Hazard. Mater., 2014, 264, 332–341.
- S17. A. T. Paulino, L. A. Belfiore, L. T. Kubota, E. C. Muniz, V. C. Almeida and E. B. Tambourgi, *Desalination*, 2011, **275**, 187–196.
- S18. G. Zhao, J. Li, X. Ren, C. Chen and X. Wang, Environ. Sci. Technol., 2011, 45, 10454–10462.
- S19. K. Dashtian, F. Nasiri Azad, M. Ghaedi, A. Jamshidi, G. Hassani, M. Montazerozohori, S. Hajati, M.
- Rajabi and A. A. Bazrafshan, RSC Adv., 2016, 6, 19780–19791.
- S20. Z. Zhen and L. Wei, RSC Adv., 2012, 2, 5178–5184.
- S21. M. Xu, P. Hadi, G. Chen and G. McKay, J. Hazard. Mater., 2014, 273, 118–123.
- S22. B. Saha, S. Chakraborty and G. Das, J. Phys. Chem. C, 2010, 114, 9817-9825.
- S23. S. S. Gupta and K. G. Bhattacharyya, J. Environ. Manag., 2008, 87, 46-58.
- S24. M. Al-Harahsheh, R. Shawabkeh, A. Al-Harahsheh, K. Tarawneh and M. M. Batiha, *Appl. Surf. Sci.*, 2009, **255**, 8098–8103.
- S25. M. Thirumavalavan, Y. Lai, L. Lin and J. Lee, J. Chem. Eng. Data, 2010, 55, 1186–1192.
- S26. N. R. Singha, M. Karmakar, M. Mahapatra, H. Mondal, A. Dutta, C. Roy and P. K. Chattopadhyay, *Polym. Chem.*, 2017, **8**, 3211–3237.
- S27. P. Kampalanonwat and P. Supaphol, ACS Appl. Mater. Interfaces, 2010, 2, 3619–3627.
- S28. A. Sartape, A. Mandhare, P. Salvi, D. Pawar, P. Raut, M. Anuse and S. Kolekar, *Chinese J. Chem. Eng.*, 2012, **20**, 768–775.
- S29. R. Wang, X. Liao, S. Zhao and B. Shi, J. Chem. Technol. Biotechnol., 2006, 81, 1301–1306.
- S30. H. Koshima and W. Onishi, *Talanta*, 1986, **33**, 391–395.
- S31. N. E. Belkhouche and M. A. Didi, Hydrometallurgy, 2010, 103, 60-67.

- S32. M. A. Salama and R. M. Mohamed, Chem. Eng. Res. Des., 2013, 91, 1352–1360.
- S33. T. Luukkonen, H. Runtti, M. Niskanen, E. T. Tolonen, M. Sarkkinen, K. Kemppainen, J. Ramo and U. Lassi, *J. Environ. Manag.*, 2016, **166**, 579–588.
- S34. J. Xi, M. He and C. Lin, *Microchem. J.*, 2011, 97, 85–91.
- S35. A. Bakir, P. McLoughlin, S. A. M. Tofail and E. Fitzgerald, Clean, 2009, 37, 712–719.
- S36. X. Yang, Z. Shi and L. Liu, Chem. Eng. J., 2015, 260, 444-453.
- S37. L. Han, H. Sun, K. S. Ro, K. Sun, J. A. Libra and B. Xing, *Bioresource Technol.*, 2017, 234, 77-85.
- S38. F. Wu, F. Sun, S. Wu, Y. Yan and B. Xing, Chem. Eng. J., 2012, 183, 172–179.
- S39. G. Ungureanu, S. Santos, R. Boaventura and C. Botelho, Environ. Eng. Manag. J., 2015, 14, 455–463.
- S40. H. T. Fan, J. X. Liu, H. Yao, Z. G. Zhang, F. Yan and W. X. Li, *Ind. Eng. Chem. Res.*, 2014, **53**, 369–378.
- S41. Y. Leng, W. Guo, S. Su, C. Yi and L. Xing, Chem. Eng. J., 2012, 211-212, 406-411.
- S42. F. Shakerian, S. Dadfarnia, A. M. H. Shabani and M. N. Ahmadabadi, *Food Chem.*, 2014, **145**, 571–577.
- S43. W. Xu, H. J. Wang, R. P. Liu, X. Zhao and J. H. Qu, J. Colloid Interf. Sci., 2011, 363, 320-326.
- S44. H. Koshima and H. Onishi, Anal. Sci., 1985, 1, 237–240.
- S45. D. Mendil, H. Bardak, M. Tuzen and M. Soylak, Talanta, 2013, 107, 162–166.
- S46. H. T. Fan, Y. Sun, Q. Tang, W. L. Li and T. Sun, J. Taiwan Inst. Chem. Eng., 2014, 45, 2640–2648.
- S47. A. Sarı, D. Cıtak and M. Tuzen, Chem. Eng. J., 2010, 162, 521-527.
- S48. A. Sari, G. Sahinoglu and M. Tuzen, Ind. Eng. Chem. Res., 2012, 51, 6877-6886.
- S49. F. Kolbe, H. Weiss, P. Morgenstern, R. Wennrich, W. Lorenz, K. Schurk, H. Stanjek and B. Daus, *J. Colloid Interf. Sci.*, 2011, **357**, 460–465.
- S50. O. D. Uluozlu, A. Sarı and M. Tuzen, Chem. Eng. J., 2010, 163, 382-388.
- S51. X. Q. Wang, M. C. He, C. Y. Lin, Y. X. Gao and L. Zheng, Chem. Erde-Geochem., 2012, 72, 41–47.
- S52. F. Hong-Tao, W. Sun, B. Jiang, Q. J. Wang, D. Wuli, C. C. Huang, K. J. Wang, Z. G. Zhang and W. X. Li, *Chem. Eng. J.*, 2016, **286**, 128–138.
- S53. X. Guo, Z. Wu, M. He, X. Meng, X. Jin, N. Qiu and J. Zhang, J. Hazard. Mater., 2014, 276, 339–345.
- S54. B. K. Biswas, J. I. Inoue, H. Kawakita, K. Ohto and K. Inoue, J. Hazard. Mater., 2009, 172, 721–728.
- S55. B. Lan, Y. Wang, X. Wang, X. Zhou, Y. Kang and L. Li, Chem. Eng. J., 2016, 292, 389–397.
- S56. T. A. Saleh, A. Sarı and M. Tuzen, Chem. Eng. J., 2016, 307, 230-238.
- S57. W. Xu, H. Wang, R. Liu, X. Zhao and J. Qu, J. Colloid Interface Sci., 2011, 363, 320–326.