Wearable superhigh energy density supercapacitors using hierarchical ternary metal selenides composite of CoNiSe₂ microspheres decorated with CoFe₂Se₄ nanorods

Chandu V. V. Muralee Gopi, Araveeti Eswar Reddy, Hee-Je Kim*

School of Electrical and Computer Engineering, Pusan National University, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, 46241, South Korea.

*Corresponding Author

Hee-Je Kim: e-mail: heeje@pusan.ac.kr; Tel: +82 51 510 2364. Fax: +82 51 513 0212.

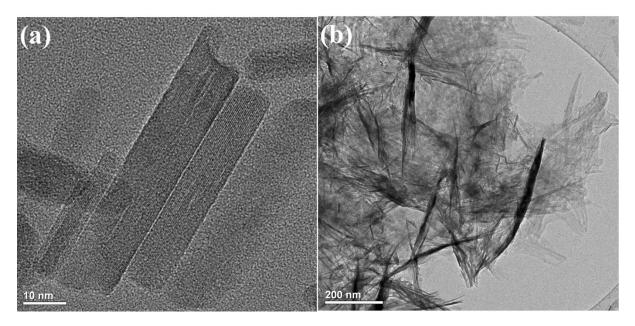
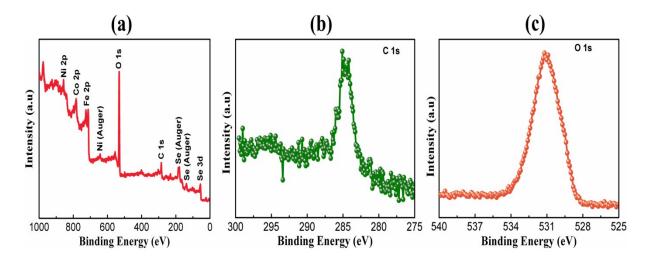
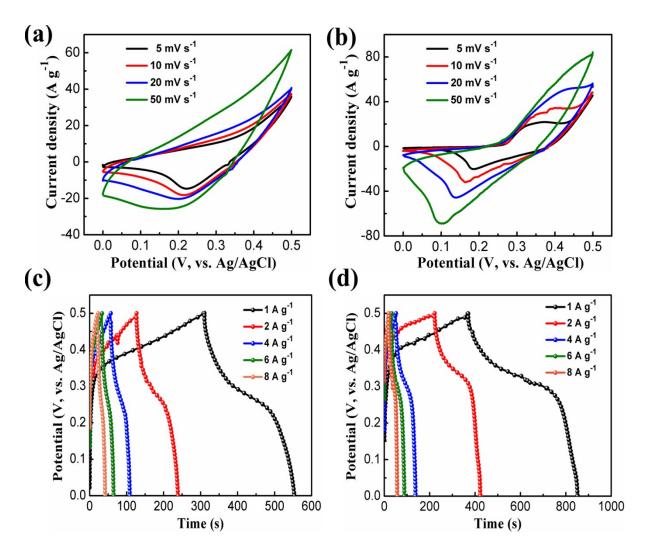




Figure S1 TEM images of CFS and CNS materials.

Figure S2. XPS survey scan spectrum of the (a) CFS-CNS and high-resolution XPS plots of (b) C 1s and (c) O 1s.

Figure S3 Electrochemical performance of the samples. (a) CV curves of the CFS and (b) CNS. Galvanostatic charge/discharge curves of (c) CFS and (d) CNS at different current densities from 1–8 A g⁻¹.

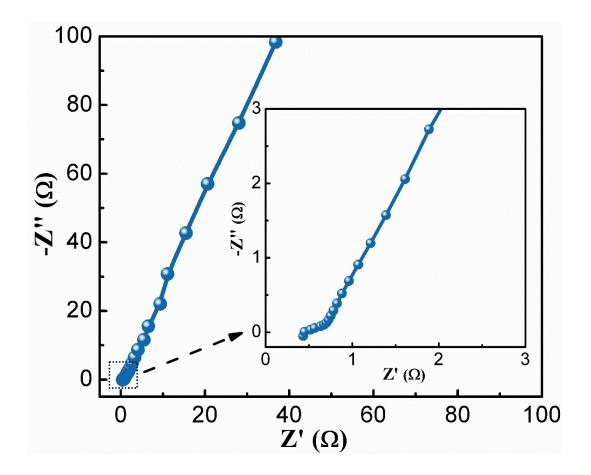


Figure S4 EIS plot of the assembled CFS-CNS//CFS-CNS symmetric SC.

Table S1. Comparative electrochemical performance of CFS-CNS//CFS-CNS symmetricdevice with previously reported SCs.

Symmetric or Asymmetric device	Cycling stability of devices	Energy densities of devices	Reference
Ni ₃ Se ₂ //AC	98% after 5000 cycles	32.8 Wh kg ⁻¹ at 677 W kg ⁻¹	[Ref. 14] Adv. Energy Mater.
CoNi ₂ S ₄ -G-MoSe ₂ // CoNi ₂ S ₄ -G-MoSe ₂	108% after 2000 cycles	38.6 Wh kg ⁻¹ at 885.6 W kg ⁻¹	[Ref. 16] Adv. Energy Mater.
FeCo ₂ S ₄ -NiCo ₂ S ₄ // FeCo ₂ S ₄ -NiCo ₂ S ₄	92% after 3000 cycles	45.8 Wh kg ⁻¹ at 1070 W kg ⁻¹	[Ref. 21] Adv. Energy Mater.
ZCS/Ni(OH) ₂ //ZCS/ Ni(OH) ₂	78% after 10000 cycles	74.93 Wh kg ⁻¹ at 650 W Kg ⁻¹	[Ref. 35] Adv. Energy Mater.
GrMnO ₂ //GrMoO ₃		42.6 Wh kg ⁻¹ at 276 W kg ⁻¹	[Ref. 39] Adv. Funct. Mater.
NiSe@MoSe ₂ //N- PMCN	91.4% after 5000 cycles	32.6 Wh kg ⁻¹ at 415 W kg ⁻¹	[Ref. 40] ACS Sustainable Chem. Eng.
Fe-SNC//Fe-SNC	95% after 1000 cycles	14.4 Wh kg ⁻¹ at 224.2 W kg ⁻¹	[Ref. 41] Adv. Energy Mater.
NiCo ₂ S ₄ - NCF//OMC-NCF	~90% after 3000 cycles	45.5 Wh kg ⁻¹ at 512 W kg ⁻¹	[Ref. 42] Adv. Energy Mater.
CFS-CNS//CFS- CNS	~97% after 3000 cycles	80.2 W h kg ⁻¹ at 1000 W kg ⁻¹	This Work

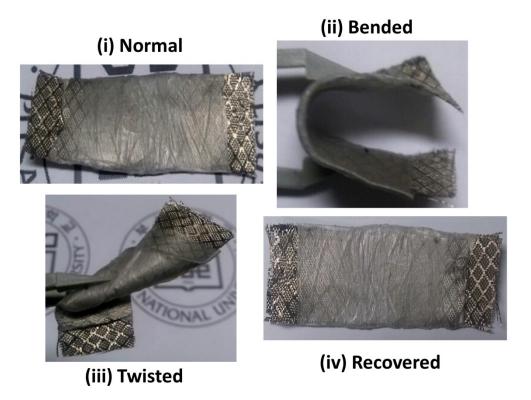


Figure S5 Photographs of symmetric supercapacitor at various bending conditions