Supporting Information

3D Porous Binary-Heteroatom Doped Carbon Nanosheet/Electrochemically Exfoliated

Graphene Hybrids for High Performance Flexible Solid-State Supercapacitors

Yuxi Liu, Xiaoming Qiu, Xiaobin Liu, Yongchang Liu, Li-Zhen Fan*

Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced

Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China

*Corresponding author: E-mail: fanlizhen@ustb.edu.cn Tel. /Fax: +86-10-62334311

Fig. S1 TEM and HRTEM images of EG.

Fig. S2 SEM images of the (a) CNS/EG-5 and (b) CNS/EG-20 hybrids.

Fig. S3 XRD patterns of CNS, EG, CNS/EG-10, and a-CNS/EG-10.

Fig. S4 CV curves of the CNS, EG, CNS/EG, and a-CNS/EG-10 electrodes at a scan rate of 1 mV s⁻¹.

Fig. S5 (a) Nyquist plots of the CNS, EG, CNS/EG, and a-CNS/EG-10 samples measured in
6 mol L⁻¹ KOH electrolyte using three-electrode systems (the inset shows the magnified high frequency range). (b) The equivalent circuit of EIS.

Fig. S6 Nyquist plot of the solid-state supercapacitor with a-CNS/EG-10 electrode measured in PVA/KOH gel electrolyte.

Fig. S7 Galvanostatic charge-discharge curves of the solid-state supercapacitor at a current density of 0.1 A g⁻¹

Materials	Current density	Capacitance	Electrolyte	D.C.
	(A g ⁻¹)	(F g ⁻¹)		Reference
Active carbon	1	70.84	Ionic liquid + poly (ethylene	_
			oxide)+ benzophenone	I
Functionalized carbon				
nanotube-coated	2	47	PVA hydrogel	2
cellulose paper				
Pind/CNT nanofibers	0.5	109	PVA/H ₂ SO ₄	3
Hierarchical porous	0.25	52.5		4
carbon network	0.23	52.5	Γ ¥Α/113Γ04	4
Hierarchical porous	0.5	81.3	DVA/KOH	5
carbon	0.5	81.5	I VA/KOII	5
Active porous carbon	0.5	142	Silica based ionic liquid gel	6
nanofibers	0.5	142	Sinca-based forme riquid ger	0
CNT fibers-MnO ₂	0.5	68	PYR14TFSI-PVDF-co-HFP	7
			polymer	,
3D graphene	1	24	PVA-H ₂ SO ₄	8
CNFs/PANI	0.25	201	PVA/H ₂ SO ₄	9
CNS/EG	0.1	234	PAN/KOH	This work

 Table S1 Comparison of specific capacitance of carbon composites in flexible solid-state

 supercapacitors

References

- X. Zhong, J. Tang, L. Cao, W. Kong, Z. Sun, H. Cheng, Z. Lu, H. Pan and B. Xu, *Electrochim. Acta*, 2017, 244, 112-118.
- 2 X. Tang, Y. H. Lui, A. R. Merhi, B. Chen, S. Ding, B. Zhang and S. Hu, ACS Appl. Mater. Inter., 2017, 9, 44429-44440.
- 3 M. Tebyetekerwa, S. Yang, S. Peng, Z. Xu, W. Shao, D. Pan, S. Ramakrishna and M. Zhu, *Electrochim. Acta*, 2017, 247, 400-409.
- 4 Y. Cheng, L. Huang, X. Xiao, B. Yao, Z. Hu, T. Li, K. Liu and J. Zhou, J. Power sources, 2016, 327, 488-494.
- 5 X. Li, K. Liu, Z. Liu, Z. Wang, B. Li and D. Zhang, *Electrochim. Acta*, 2017, 240, 43-52.
- D. W. Lawrence, C. Tran, A. T. Mallajoysula, S. K. Doorn, A. Mohite, G. Gupta and V. Kalra, *J. Mater. Chem. A*, 2016, 4, 160-166.
- 7 A. Pendashteh, E. Senokos, J. Palma, M. Anderson, J. J. Vilatela and R. Marcilla, *J. Power. Sources*, 2017, **372**, 64-73.
- N. P. Sari, D. Dutta, A. Jamaluddin, J. Chang and C. Su, *Phys. Chem. Chem. Phys.*, 2017, 19, 30381-30392.
- 9 F. Miao, C. Shao, X. Li, N. Lu, K. Wang, X. Zhang and Y. Liu, *Energy*, 2016, 95, 233-241.