Supporting Information for

Large scale production of polyacrylonitrile-based Porous Carbon

Nanospheres for Asymmetric Supercapacitors

Yujing Liu^{a,b}, Jingyi Cao^c, Xiaohui Jiang^{a,b}, Yange Yang^{c,d}, Liangmin Yu^{a,b*}, Xuefeng Yan ^{a,b}

^a Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China;

^b Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao, 266100, China;

^c Naval Coatings Analysis and Test Center, Beijing, 102442, China;

^d Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Science, Shenyang, 110016, China;

*Corresponding author E-mail: eproouc@163.com; Tel: (86)-0532-66782533.

Figure S1 (a, b) Products yielded by 10 L reactor and corresponding SEM image.

Figure S2 FTIR spectroscopy of PANM and PANCMs.

Figure S3 (a, b) SEM images of PAN-wd and (c) HFTEM image of PAN-wd.

Figure S4 Raman spectra of PANCMs specimens fitted by Voigt function.

Figure S5 Curve-fitted high-resolution XPS scans of PANCMs for C 1s, N 1s and O 1s.

Figure S6 CV curves of AC, PANCM-700, PANCM-900 and PANCM-n at different scan rates.

Figure S7 Galvanostatic charge/discharge profiles of PANCMs at 0.5 A g⁻¹ under three-electrode system.

Figure S8 The SEM images of bare Ni foam and Ni foam coated with $Co_{0.9}Mn_{0.1}$ oxide.

Figure S9 SEM images of $Co_{0.9}Mn_{0.1}$ oxide.

Figure S10 XRD patterns of Co_{0.9}Mn_{0.1} arrays.

Figure S11 (a) CV plots of PANCM-800//PANCM-800 device and (b) corresponding chargedischarge curves at different current densities.

Figure S12 Nyquist plot of PANCM-800// $Co_{0.9}Mn_{0.1}$ device and equivalent circuit model.

Figure S13 Red LED powered by two devices connected in series.

Samples	N-6	N-5	N-Q	N-X	0-1	O-2	0-3
PANCM-n	16.62	50.76	5.17	27.45	21.92	61.06	17.22
PANCM-700	10.33	19.27	44.92	25.48	23.78	78.82	3.40
PANCM-800	10.40	22.31	59.33	7.96	28.78	63.63	7.59
PANCM-900	16.08	46.03	26.31	11.57	33.98	48.02	18.00

Table S1 XPS composition (N and O at%) of PANCMs obtained by fitting.

Materials	$R_e(\Omega)$	$R_{ct}(\Omega)$	$Z_w(\Omega)$	conductivity (S/m)
AC	0.236	0.277	0.564	31.0
PANCM-n	0.238	0.572	0.997	2.2
PANCM-700	0.185	0.284	0.251	77.1
PANCM-800	0.191	0.240	0.224	251.2
PANCM-900	0.218	0.243	0.285	260.4

 Table S2 Parameters of the equivalent circuit and electrical conductivity for different electrodes.

Materials	Electrolyte	Capacitance (F g ⁻¹)		Cell	Capacitance	Number. of cycles	Ref.
					retention		
					(%)/		
					Rate (A g ⁻¹)		
		Low rate	High rate				
		(A g ⁻¹)	(A g ⁻¹)				
PASC ^a	2М КОН	185	170	3E	97.5 (2)	10000	S 1
		(0.625)	(2)				
NHPC ^b	6M KOH	257	128	3E	90.38 (1)	10000	S2
		(0.5)	(20)				
NPC-PAN °	$1 M H_2 SO_4$	210	189	2 E	-	-	S3
		(0.1)	(1)				
HPCs ^d	6M KOH	314	237	3E	96 (5)	2000	S4
		(0.5)	(20)				
HPCNs ^e	6M KOH	240	-	2E	96 (5)	3000	S5
		(1)					
CLCNF ^f	$1 M H_2 SO_4$	206	101	3E	75.3 (10)	1000	S 6
		(0.5)	(800)				
PAN ^g	6M KOH	240	168	2E	92 (1)	5000	S 7
		(0.05)	(50)				
	$1 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	200	150	2E	75 (1)	5000	
		(0.05)	(50)				
PMC ^h	$1 M H_2 SO_4$	270	195	3E	100 (20)	5000	S 8
		(0.2)	(100)				
NCF ⁱ	$1 \text{ M H}_2 \text{SO}_4$	242	80	3 E	99 (1)	5000	S9

Fable S3 Comparison of electrochemica	performance of carbon	materials derived from PAN.
--	-----------------------	-----------------------------

		(0.2)	(5)				
NPC-S ^j	1M Na ₂ SO ₄	244	100	2E	85 (2)	10000	S10
		(0.1)	(20)				
CNF ^k	2M KOH	210	49	3E	100	2000	S11
		(2 mV/ s)	(200 mV/s)		(50 mV s ⁻¹)		
NHPC ¹	2M KOH	314	215	3E	90 (2)	10000	S12
		(0.5)	(20)				
HPCNFs ^m	$2M \ H_2 SO_4$	307	193.4	2E	98.2 (5)	10000	S13
		(1)	(50)				
N-HMSCCs ⁿ	6M KOH	206	127	3E	92.3 (5)	3000	S14
		(1)	(10)				
HPC °	6M KOH	51	38.25	2E	96 (5)	50000	S15
		(0.5)	(32)				
NPCNFs ^p	$1M H_2SO_4$	224.9	155.5	3E	105.2 (5)	8000	S16
		(0.5)	(30)				
HMCSs q	$1M H_2SO_4$	298.6	212	3E	97.3 (1)	5000	S17
		(1)	(20)				
PANCNT ^r	$1M H_2SO_4$	216	150	3E	108 (50 mV	3000	S18
		(10 mV/s)	(50 mV/s)		s ⁻¹)		
PANCM	2M KOH	290	200	3E	93 (10)	3000	This
		(0.5)	(20)				work

^a PAN-b-PS-b-PAN; ^b nitrogen-doped hierarchical carbon; ^c PAN-based nanoporous carbon; ^d beehive-like hierarchical porous carbons; ^e hierarchical porous carbon nanospheres; ^f cross-linked carbon nanofiber; ^g PAN-based nanofiber paper; ^h N-doped porous monolithic carbons; ⁱ nitrogen-enriched carbon fibers; ^j nanoporous carbon spheres; ^k carbon nanofibers; ¹ nitrogen-doped

hierarchical porous carbon; ^m hollow particle-based; ⁿ nitrogen-doped carbon nanofibers; ^o nitrogendoped hollow mesoporous spherical carbon capsules; ^p hierarchically porous carbon; ^q nitrogen/phosphorus co-doped nonporous carbon nanofibers; ^r hollow mesoporous carbon spheres.

References

- S1 Y. Wang, L.B. Kong, X.M. Li, F. Ran, Y.C. Luo and L. Kang, New Carbon Materials, 2015, 30(4), 302-309.
- S2 Y.X. Tong, X.M. Li, L.J. Xie, F.Y. Su, J.P. Li, G.H. Sun, Y.D. Gao, N. Zhang, Q. Wei and C.M. Chen, *Energy Storage Materials*, 2016, 3, 140-148.
- S3 X.Q. Yang, D.C. Wu, X.M. Chen and R.W. Fu, J. Phys. Chem. C, 2010, 114, 8581-8586.
- S4 L. Yao, G.Z. Yang, P. Han, Z.H. Tang and J.H. Yang, J. Power Sources, 2016, 315, 209-217.
- S5 L. Yao, G.Z. Yang and P. Han, RSC Adv., 2016, 6, 43748-43754.
- S6 G.B. Xue, J. Zhong, Y.L. Cheng and B. Wang, Electrochim. Acta, 2016, 215, 29-35.
- S7 E.J. Ra, E. Raymundo-Piñero, Y.H. Lee and F. Béguin, Carbon, 2009, 47, 2984-2992.
- S8 Y. Shu, J. Maruyama, S. Iwasaki, S. Maruyama, Y.H. Shen and H. Uyama, *RSC Adv.*, 2017, 7, 43172-43180.
- S9 L. Fan, L. Yang, X.Y. Ni, J. Han, R. Guo and C.F. Zhang, Carbon, 2016, 107, 629-637.
- S10 J.N. Zhang, R. Yuan, S. Natesakhawat, Z.Y. Wang, Y.P. Zhao, J.J. Yan, S.Y. Liu, J. Lee, D.L. Luo, E. Gottlieb, T. Kowalewski, M.R. Bockstaller and K. Matyjaszewski, ACS Appl. Mater. Interfaces., 2017, 9, 37804-37812.
- S11 C.C. Lai and C.T. Lo, *Electrochimica Acta*, 2015, 183, 85-93.
- S12 K. Yan, L.B. Kong, K.W. Shen, Y.H. Dai, M. Shi, B. Hu, Y.C. Luo and L. Kang, *Appl. Surf. Sci.*, 2016, 364, 850-861.
- S13 L.F. Chen, Y. Lu, L. Lu and X.W. Lou, *Energy Environ. Sci.*, 2017, 10, 1777-1783.
- S14 A.B. Chen, K.C. Xia, L.S. Zhang, Y.F. Yu, Y.T. Li, H.X. Sun, Y.Y Wang, Y.Q. Li and S.H. Li, *Langmuir*, 2016, 32, 8934-8941.
- S15 F.J. Miao, C.L. Shao, X.H. Li, K.X. Wang, N. Lu and Y.C. Liu, J. Mater. Chem. A., 2016, 4, 5623-5631
- S16 X.D. Yan, Y. Liu, X.R. Fan, X.L. Jia, Y.H. Yu and X.P. Yang, *J. Power Sources.*, 2014, 248, 745-751.
- S17 C. Liu, J.Z. Liu, J. Wang, J.S. Li, R. Luo, J.Y. Shen, X.Y. Sun, W.Q. Han and L.J. Wang, J. Colloid Interface Sci., 2018, 512, 713-721.
- S18 Y.Q. Wang, B. Fugetsu, Z.P. Wang, W. Gong, I. Sakata, S. Morimoto, Y. Hashimoto, M. Endo, M. Dresselhaus and M. Terrones, *Scientific Reports*, 2017, 7, 40259.