Supporting Information

Cation Exchange Synthesis of Ni_xCo_(3-x)O₄ (x=1.25) Nanoparticles on Aminated Carbon Nanotubes with High Catalytic Bifunctionality for Oxygen Reduction/Evolution Reaction toward Efficient Zn-Air Batteries

Bohong Chen,^a Zhongqing Jiang,^b Jianlin Huang,^a Binglu Deng,^a Lingshan Zhou,^a Zhong-Jie Jiang^{*a} and Meilin Liu^{a,c}

^a Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, P. R. China. E-mail: Zhongjiejiang1978@hotmail.com or <u>eszjiang@scut.edu.cn</u>.

^b Department of Physics, Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.

^c School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.

This PDF file includes:

Experimental section.

Figures. S1 to S8

Tables S1-S3

Experimental section.

Synthesis of the cp-Ni_xCo_(3-x)O₄/NH₂-CNTs: 20 mg of Co(Ac)₂·6H₂O and 10 mg of Ni(Ac)₂·4H₂O and 15 mg of NH₂-CNTs were dispersed in 50 mL of dimethylformamide (DMF) and ethanol (EtOH) with a volume ratio 8:2 by magnetic stirring for 10 h at 80 °C, followed by the addition of 0.50 mL of NH₄OH (30% solution). Then the solution was transferred to 100 mL of Teflon-lined autoclave and maintained at 160 °C for 6 h. After cooling, the product was separated by centrifugation, washed with deionized water and ethanol, and dried in an oven at 60 °C.

Synthesis of the NiO/NH₂-CNTs: 10 mg of Ni(Ac)₂·4H₂O and 15 mg of NH₂-CNTs were dispersed in 50 mL mixed solution of DMF and EtOH with a volume ratio 8:2 by magnetic stirring for 10 h at 80 °C, followed by the addition of 0.50 mL of NH₄OH (30% solution). Then the solution was transferred to 100 mL of Teflon-lined autoclave and maintained at 160 °C for 6 h. After cooling, the product was separated by centrifugation, washed with deionized water and ethanol, and dried in an oven at 60 °C.

Figure S1. (a) TEM image of the Co₃O₄/NH₂-CNTs. (b) Size distribution histogram of the Co₃O₄ NPs in the Co₃O₄/NH₂-CNTs.

Figure S2. XPS survey spectra of the Ni_xCo_(3-x)O₄/NH₂-CNTs and the NH₂-CNTs.

Figure S3. TEM image of the Co₃O₄/CNTs. The inset shows a magnified TEM image of the

Co₃O₄/CNTs.

Figure S4. (a) XPS survey spectra of the cp-Ni_xCo_(3-x)O₄/NH₂-CNTs. High-resolution XPS spectra of (b) Co 2p, (c) Ni 2p, (d) N 1s, (e) O 1s and (f) C 1s.

Figure S5. TEM images of the cp-Ni_xCo_(3-x)O₄/NH₂-CNTs obtained from the direct coprecipitation at (a) the low and (b) high magnifications. (c) Size distribution histogram of the Ni_xCo_(3-x)O₄ NPs in the cp-Ni_xCo_(3-x)O₄/NH₂-CNTs. TEM images of the NiO/NH₂-CNTs obtained from the direct co-precipitation at (d) the low and (e) high magnifications. (f) Size distribution histogram of the NiO NPs in the NiO/NH₂-CNTs.

Figure S6. TGA curve of the cp-Ni_xCo_(3-x)O₄/NH₂-CNTs.

Figure S7. Electrochemical impedance spectra of the $Ni_xCo_{(3-x)}O_4/NH_2$ -CNTs and the $Ni_xCo_{(3-x)}O_4$.

Figure S8. N₂ adsorption-desorption isotherms of Ni_xCo_(3-x)O₄/NH₂-CNTs and NH₂-CNTs.

Table S1. Relative percentages of the atoms in the $Ni_xCo_{(3-x)}O_4/NH_2$ -CNTs and NH_2 -CNTs based on the XPS results.

Sample	С	Ν	0	Ni	Со
Ni _x Co _(3-x) O ₄ /NH ₂ -CNTs	59.09	4.67	24.55	4.77	6.92
NH ₂ -CNTs	69.82	8.56	21.62	-	-

sample	element	Assignment	Binding energy /eV	percentage / %	
NH2- CNTs	С	C sp ²	284.8	38.72	
		C-C/C-N/C-O	285.6	20.33	
		N-C=N/C=O	287.2	30.42	
		O-C=O/C=N	289.7	10.53	
	0	O-C-O	531.9	59.23	
		C=O	533.2	40.77	
	Ν	Pyridinic N	398.9	12.76	
		Amine (-NH ₂)	399.3	29.08	
		Pyrrolic N	400.5	49.43	
		Graphitic N	401.3	8.73	
	С	$\tilde{C} sp^2$	284.6	38.54	
		C-C/C-N/C-O	285.4	20.53	
		N-C=N/C=O	287.0	30.32	
		O-C=O/C=N	289.5	10.61	
	Ο	O-C-O	531.8	23.69	
NixCo(3- x)O4/NH2- CNTs		C=O	533.0	16.30	
		M-O-M	529.9	25.71	
		Adsorbed O ₂	531.0	34.30	
	Ν	pyridinic N	398.6	12.87	
		amine (-NH ₂)	399.1	23.17	
		pyrrolic N	400.4	55.43	
		graphitic N	401.0	8.53	

Table S2. Relative percentages of the C, O, and N containing components in the NH2-CNTsand $Ni_xCo_{(3-x)}O_4/NH_2$ -CNTs estimated based on the XPS spectra deconvolution.

Bifunctional Catalyst	Mass Loading / mg cm ⁻ 2	E _{ORR} at onset potential / V	Eorr at the current density of -3 mA cm ⁻²) / V	E _{OER} at onset potential / V	E _{OER} at the current density of -10 mA cm ⁻²) / V	ΔE= (OER- ORR) vs. RHE /V	Ref.
Ni _x Co _(3-x) O ₄ /NH ₂ - CNTs	0.12	0.948	0.851	1.479	1.615	0.764	This work
MnCo ₂ O ₄ /CNT	0.1	0.88	0.75	1.49	1.62	0.86	1
Co ₃ O ₄ /N-rGO	0.11	0.89	0.80	1.54	1.81	1.01	2
Co ₉ S ₈ /NSC	0.12	0.90	0.82	1.52	1.65	0.89	3
NiFe2O4/MWCNT	0.64	0.91	0.81	1.49	1.61	0.80	4
NiCo ₂ O ₄	0.22	0.93	0.78	1.51	1.62	0.84	5
NiCo ₂ O ₄ /G	0.41	0.92	0.62	1.52	1.62	0.94	6
CoFe ₂ O ₄ /CNTs	1.0	0.904	0.75	1.55	1.65	0.90	7
Fe0.1Ni0.9Co2O	0.2	0.825	0.2	1.503	1.65	1.45	8
NiCo ₂ O ₄ /C	0.19	0.87	0.72	1.52	1.65	0.93	9
NiCo2O4@Co3O4	0.23	0.82	0.68	1.55	1.68	1.0	10
FeCo2O4/hollow graphene(HG)	1.0	0.92	0.82	1.54	1.65	0.83	11
ZnCo ₂ O ₄ /NCNT	0.2	0.88	0.80	1.56	1.65	0.85	12
Co ₃ O ₄ @Co/NCNT	0.21	0.88	0.72	1.52	1.62	0.89	13
NiCo/PFC aerogels	0.2	0.86	0.79	1.54	1.63	0.84	14

Table S3. Comparison of the catalytic bifunctionality of the $Ni_xCo_{(3-x)}O_4/NH_2$ -CNTs with those reported.

Reference

- X. Ge, Y. Liu, F. W. Goh, T. S. Hor, Y. Zong, P. Xiao, Z. Zhang, S. H. Lim, B. Li and X. Wang, ACS Appl. Mater. Interfaces, 2014, 6, 12684-12691.
- T. Zhang, C. He, F. Sun, Y. Ding, M. Wang, P. Lin, J. Wang and Y. Lin, *Sci. Rep.*, 2017, 7, 43638-43645.
- H.-x. Zhong, K. Li, Q. Zhang, J. Wang, F.-l. Meng, Z.-j. Wu, J.-m. Yan and X.-b. Zhang, NPG Asia Mater., 2016, 8, 308-308.
- P. Li, R. Ma, Y. Zhou, Y. Chen, Q. Liu, G. Peng, Z. Liang and J. Wang, *RSC Adv.*, 2015, 5, 73834-73841.
- 5. M. Prabu, K. Ketpang and S. Shanmugam, *Nanoscale*, 2014, 6, 3173-3181.
- 6. D. U. Lee, B. J. Kim and Z. Chen, J. Mater. Chem. A, 2013, 1, 4754-4762.
- 7. W. Yan, W. Bian, C. Jin, J. H. Tian and R. Yang, *Electrochim. Acta*, 2015, 177, 65-72.
- Y. T. Lu, Y. J. Chien, C. F. Liu, T. H. You and C. C. Hu, J. Mater. Chem. A, 2017, 5, 21016-21026.
- 9. J. Wang, Z. Wu, L. Han, R. Lin, H. L. Xin and D. Wang, Chemcatchem, 2016, 8, 736-742.
- P. Sennu, H. S. Park, K. U. Park, V. Aravindan, K. S. Nahm and Y. S. Lee, *J. Catal.*, 2017, 349, 175-182.
- 11. W. Yan, Z. Yang, W. Bian and R. Yang, *Carbon*, 2015, 92, 74-83.
- B. Y. Xia, Y. Yan, N. Li, H. B. Wu, X. W. Lou and X. Wang, *Nat. Energy*, 2016, 1, 15006-15011.
- 13. N. Sikdar, B. Konkena, J. Masa, W. Schuhmann and T. K. Maji, Chemistry, 2017.
- G. Fu, Y. Chen, Z. Cui, Y. Li, W. Zhou, S. Xin, Y. Tang and J. B. Goodenough, *Nano Lett.*, 2016, 16, 6516-6522.