Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Hierarchical 3D Zn-Ni-P nanosheet arrays as an advanced electrode for

high-performance all-solid-state asymmetric supercapacitors

Thanh Tuan Nguyen,^a Jayaraman Balamurugan,^a Nam Hoon Kim,^a and Joong Hee Lee^{a,b*}

^aAdvanced Materials Institute of BIN Convergence Technology (BK21 Plus Global) & Dept.

of BIN Convergence Technology, Chonbuk National University, Jeonju, Jeonbuk 54896,

Republic of Korea.

^bCarbon Composite Research Centre, Department of Polymer –Nano Science and

Technology, Chonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea

**Corresponding author:* Tel: +82-63-270-2342

Email address: jhl@jbnu.ac.kr (Joong Hee Lee)

Fig. S1 (a, b) SEM images with different magnification of Zn-Ni LDH precursors, and (c, d) SEM images with different magnification of Zn-Ni-O NS arrays.

Fig. S2 AFM image and its height profile of Zn-Ni-P NS arrays.

Fig. S3 X-ray diffraction pattern of Zn-Ni-P, Zn-Ni LDH, and Zn-Ni-O NS arrays.

Fig. S4 XPS survey spectra of Zn-Ni-P, Zn-Ni LDH, and Zn-Ni-O NS arrays.

Fig. S5 XPS high-resolution spectra of (a) Zn 2p, (b) Ni 2p, (c) O 1s for Zn-Ni LDH, (d) Zn 2p, (e) Ni 2p, and (f) O 1s for Zn-Ni-O NS arrays.

In case of the Zn-Ni LDH, the high-resolution XPS spectrum of Zn 2p exhibits the main peaks at the binding energies of ~1020.9, 1023.1, and 1045.2 eV, corresponding to Zn $2p_{3/2}$ and Zn $2p_{1/2}$, respectively. The high-resolution XPS spectrum of Ni 2p shows that the binding energies of ~855.9, 858.2 and 861.9 eV, which corresponds to the Ni $2p_{3/2}$ and its satellite

peak, respectively. In addition, the binding energies of ~873.7, 877.2, and 880.2 eV that correspond to the Ni $2p_{1/2}$ and its satellite peak, respectively. The high-resolution XPS spectrum of O 1s displays two strong peaks at ~531 and 532.3 eV, corresponding to the M-OH and M-O bonding. For Zn-Ni-O NS arrays, the Zn 2p deconvoluted into two main peaks at the binding energies of ~1021.6 and 1044.7 eV, corresponding to Zn $2p_{3/2}$ and Zn $2p_{1/2}$, respectively. The Ni 2p deconvoluted into three main peaks at the binding energies of ~856.3, 858.6 and 862.4 eV, corresponding to Ni $2p_{3/2}$ and its satellite peaks, respectively. Besides, the binding energies of ~873.9, 876.3, and 880.1 eV which correspond to the Ni $2p_{1/2}$ and its satellite peak, respectively. The O 1s deconvoluted into two main peaks at the binding energies of ~531.4 and 532.2 eV, corresponding to M-OH and M-O bonding. The binding energies of the Zn 2p, Ni 2p, and O 1s is relatively higher than that of the bulk materials, which further confirms that the high synergistic interaction between Zn-Ni and OH/O in the as-prepared materials (Zn-Ni LDH and Zn-Ni-O NS arrays).

Fig. S6 (a, b) CV curves with different sweep rates, (c, d) GCD curves with different current densities of Zn-Ni LDH and Zn-Ni-O electrodes, respectively.

Fig. S7 GCD curves of Zn-Ni LDH, Zn-Ni-O, and Zn-Ni-P electrodes at a constant current density of 2 mA cm⁻².

Fig. S8 Cycling performance of Zn-Ni-P, Zn-Ni LDHs, and Zn-Ni-O electrodes at current density of 12 mA cm⁻².

Fig. S9 EIS of Zn-Ni-P electrode during the cycling stability test (Inset shows the equivalent circuit).

Fig. S10 SEM picture of Zn-Ni-P electrode (after cycling stability tests).

Fig. S11 SEM images with different magnification of (a, b) Zn-Ni LDH, and (c, d) Zn-Ni-O NS arrays (after cycling stability test).

Fig. S12 X-ray diffraction pattern of (a) Zn-Ni-P, (b) Zn-Ni-O, and (c) Zn-Ni LDH electrodes (after cycling stability test).

Figure S13. XPS high-resolution spectra of (a) Zn 2p, (b) Ni 2p, (c) P 2p for Zn-Ni-P NS arrays, (d) Zn 2p, (e) Ni 2p, (f) O 1s for Zn-Ni-O NS arrays, (g) Zn 2p, (h) Ni 2p, (i) O 1s for Zn-Ni LDH precursor (after cycling stability test).

Fig. S14 Schematic illustration for the synthesis of Fe₂O₃@NG hydrogel.

Fig. S15 SEM images with different magnification of the as-synthesized $Fe_2O_3@NG$ hydrogel.

Fig. S16 TEM images with different magnification of as-synthesized Fe₂O₃@NG hydrogel.

Fig. S17 N_2 sorption isotherm of the as-synthesized Fe₂O₃@NG hydrogel (Inset shows the pore size distribution).

Fig. S18 (a) CV curves of the as-synthesized NG, Fe₂O₃, and Fe₂O₃@NG hydrogel at a scan rate of 50 mV s⁻¹, (b) GCD curves as-synthesized NG, Fe₂O₃, and Fe₂O₃@NG hydrogel at a current density of 2 A g⁻¹, (c) CVs of Fe₂O₃@NG hydrogel at different sweep rate from 10 to 100 mV s⁻¹, (d) GCDs of Fe₂O₃@NG hydrogel at different current density from 2 to 50 A g⁻¹, (e) specific capacity of Fe₂O₃@NG hydrogel at different current densities, and (f) Cycling stability of Fe₂O₃@NG hydrogel (Inset shows EIS of Fe₂O₃@NG electrode during the cycling stability test).

Fig. S19 SEM image of the as-synthesized Fe₂O₃@NG hydrogel (after cycling stability test).

Fig. S20 Fe₂O₃@NG (negative) and Zn-Ni-P (positive) electrodes measured at a constant scan rate of 50 mV s⁻¹ in a three-electrode configuration.

Fig. S21 CV curves (scan rate 50 mV s⁻¹) of the optimized Zn-Ni-P//Fe₂O₃@NG ASC device measured at different potential windows from 0.6 to 1.6 V, (b) GCD curves (at a current density of 3 A g⁻¹) of the Zn-Ni-P//Fe₂O₃@NG ASC device collected at different potential windows from 0.6 to 1.6 V.

Fig. S22 Coulombic efficiency and specific capacity of the Zn-Ni-P NS//Fe₂O₃@NG ASC device in KOH-PVA electrolyte *vs.* different operating cell voltage.

Fig. 23 Volumetric capacity vs. current density of the Zn-Ni-P//Fe₂O₃@NG ASC device.

Fig. S24 Schematic of the redox reaction mechanism involved in the high electrochemical properties of the exclusive ion diffusion process.

Samples	Zn (at. %)	Ni (at. %)	P (at. %)	O (at. %)
Zn-Ni LDHs	19.03	38.72		42.25
Zn-Ni-O NS	17.94	38.31		43.75
Zn-Ni-P NS	18.71	37.06	38.09	6.14

Table S1. Elemental composition of Zn-Ni LDHs, Zn-Ni-O, and Zn-Ni-P NS arrays estimated by ICP-OES.

Zn, Ni, P and O contents were detected by ICP-OES.

Electrode materials	Specific capacitance/ capacity	Current load/ Scan rate	Electrolyte	Stability (Cycles)	References
Ni ₂ P NS/NF	2141 F g ⁻¹	50 mV s ⁻¹	6 M KOH	-	1
Amorphous Ni-P	1597 F g ⁻¹	0.5 A g ⁻¹	2 M KOH	71.4% (1000)	2
NiCoP NS	194 mAh g ⁻¹	1 A g ⁻¹	1 M KOH	81% (5000)	3
Ni _x P _y	1272 C g ⁻¹	$2 \mathrm{A} \mathrm{g}^{-1}$	3 M KOH	90.9% (5000)	4
Ni ₈ -Co ₁ -P	1448 F g ⁻¹	1 A g ⁻¹	3 M KOH and 0.5 M LiOH	-	5
Co ₂ P nanoflowers	416 F g ⁻¹	1 A g ⁻¹	6 M KOH	-	6
Ni-P@NiCo ₂ O ₄	1240 F g ⁻¹	1 A g ⁻¹	6 M KOH and 0.7 M LiOH	-	7
Ni ₂ P	843.25 F g ⁻¹	1 A g ⁻¹	2 M KOH	96% (1000)	8
Ni-Co-S	1418 F g ⁻¹	5 A g ⁻¹	1 M KOH	-	11
ZnCo ₂ O ₄ @Ni _x Co _{2x} (O H) _{6x} NWAs	419.1 μ A h cm ⁻²	5 mA cm ⁻²	2 M KOH	81.4% (2000)	10
Grass-like Ni ₃ S ₂ nanorod/nanowire	4.52 F cm^{-2}	1.25 mA cm^{-2}	3 M KOH	108.3% (2000)	11
Ni _x Co _{1-x} O/Ni _y Co ₂₋ _y P@C	1.32 F cm^{-2}	1 mA cm ⁻²	1 M KOH	No decay (3000)	12
Zn-Ni-P NS	384 mAh g ⁻¹	2 mA cm ⁻²	2 M KOH	96.45 (10000)	This work

 Table S2. Electrode properties comparison with reported literatures.

System	Electrolyte	Device window (V)	Energy Density (W h kg ⁻¹)	Power density (W kg ⁻¹)	Stability (Cycles)	Ref
N ₂ P NS/NF//AC	6 M KOH	0-1.4	26	337	91.3% (5000)	1
Ni-P//AC	2 M KOH	0-1.6	29.2	400	84.5% (1000)	2
NiCoP//Graphene	1 M KOH	0-1.5	32.9	1301	83% (5000)	3
Ni _x P _y //AC	3 M KOH	0-1.5	67.2	750	84.6% (5000)	4
Ni ₈ Co ₁ P//AC	3 M KOH and 0.5 M LiOH	0-1.5	22.8	4320	No decay (5000)	5
Co ₂ P//Graphene	6 M KOH	0-1.5	8.8	6000	97% (6000)	6
Ni-P@NiCo ₂ O ₄ //AC	6 M KOH and 0.7 M LiOH	0-1.4	13.3	5700	78.3% (10000)	7
Ni ₂ P//Fe ₂ O ₃	2 M KOH	0-1.6	35.5	400	86% (1000)	8
Ni-Co-S//Graphene	1 M KOH	0-1.8	60	1800	82.2% (20000)	9
ZnCo ₂ O ₄ @Ni _x Co _{2x} (OH) _{6x} NWAs//AC	2 M KOH	0-1.7	26.2	511.8	88.2% (2000)	10
Ni ₃ S ₂ //NPGC	3 M KOH	0-1.8	48.5	4800	93.1% (5000)	11
Zn-Ni-P//Fe ₂ O ₃ @NG	2 M KOH	0-1.6	90.12	611	93.05% (20000)	This work

 Table S3. ASCs device properties comparison with reported literatures.

Notes and References

- K. Zhou, W. J. Zhou, L. J. Yang, J. Lu, S. Cheng, W. J. Mai, Z. H. Tang, L. G. Li and S. W. Chen, *Adv. Funct. Mater*, 2015, 25, 7530-7538.
- D. Wang, L. B. Kong, M. C. Liu, W. B. Zhang, Y. C. Luo and L. Kang, J. Power Sources, 2015, 274, 1107-1113.
- H. F. Liang, C. Xia, Q. Jiang, A. N. Gandi, U. Schwingenschlogl and H. N. Alshareef, Nano Energy, 2017, 35, 331-340.
- S. Liu, K. V. Sankar, A. Kundu, M. Ma, J. Y. Kwon and S. C. Jun, ACS Appl. Mater. Interfaces, 2017, 9, 21829-21838.
- 5. R. Ding, X. D. Li, W. Shi, Q. L. Xu and E. H. Liu, Chem. Eng. J., 2017, 320, 376-388.
- X. J. Chen, M. Cheng, D. Chen and R. M. Wang, ACS Appl. Mater. Interfaces, 2016, 8, 3892-3900.
- X. D. Li, R. Ding, L. H. Yi, W. Shi, Q. L. Xu and E. H. Liu, *Electrochim. Acta.*, 2016, 222, 1169-1175.
- D. Wang, L. B. Kong, M. C. Liu, Y. C. Luo and L. Kang, *Chem. Eur. J.*, 2015, 21, 17897-17903.
- 9. W. Chen, C. Xia and H. N. Alshareef, ACS Nano, 2014, 8, 9531-9541.
- W. B. Fu, Y. L. Wang, W. H. Han, Z. M. Zhang, H. M. Zha and E. Q. Xie, *J. Mater. Chem. A*, 2016, 4, 173-182.
- T. T. Li, Y. P. Zuo, X. M. Lei, N. Li, J. W. Liu and H. Y. Han, *J. Mater. Chem. A*, 2016, 4, 8029-8040.
- L. Wan, J. W. Xiao, F. Xiao and S. Wang, ACS Appl. Mater. Interfaces, 2014, 6, 7735-7742.