Supporting Information

A Systematic Evaluation of the Role of the Lanthanide Elements in Complex Functional Oxides; Implications for Energy Conversion Devices

> Ji Wu^(a), Kotaro Fujii^(b), Masatomo Yashima^(b), Aleksandar Staykov^(a), Taner Akbay^(c), Tatsumi Ishihara^(a,c,d), and John A. Kilner^{* (a,e)}

^(a) International Institute for Carbon Neutral Energy Research, Kyushu University,
744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
^(b) Department of Chemistry, School of Science, Tokyo Institute of
Technology, 2-12-1-W4-17, Ookayama, Meguroku, Tokyo, 152-8551, Japan
^(c) Advanced Research Centre for Electric Energy Storage, Kyushu University,
744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
^(d) Department of Applied Chemistry, Kyushu University,
744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
^(e) Department of Materials, Imperial College London,
South Kensington, London SW7 2AZ, United Kingdom

Compound a (Å) c (Å) 3.94 6.13 La_2O_3 Exp.¹ LCAO PBE 3.99 6.27 1.39% 2.21% error LCAO PBE0 3.97 6.20 error 0.74% 1.18% PAW PBE 3.92 6.17 -0.53% 0.65% error PAW PBE0 3.91 6.14 -0.51% 0.16% error LaAlO₃ Exp.² 5.36382 13.1091 LCAO PBE 5.434 13.234 error 0.95% 1.31% LCAO PBE0 5.372 13.112 error 0.15% 0.03% PAW PBE 5.379 13.017 error 0.28% -0.70% PAW PBE0 5.379 13.016 error 0.28% -0.71% Exp. ³ SrO 5.16132 5.16132 LCAO PBE 5.127 5.127 error -0.67% -0.67% LCAO PBEO 5.099 5.099 error -1.20% -1.20% PAW PBE 5.127 5.127 -0.67% -0.67% error PAW PBE0 5.127 5.127 error -0.67% -0.67% SrTiO₃ Exp.⁴ 3.901 3.901 LCAO PBE 3.924 3.924 error 0.59% 0.5% LCAO PBEO 3.885 3.885 error -0.40% -0.40% PAW PBE 3.923 3.923 error 0.56% 0.56% PAW PBE0 3.921 3.921 error 0.51% 0.51% Pr_2O_3 Exp.¹ 6.0131 3.8589 LCAO PBE 3.900 6.143 1.07% 2.15% error LCAO PBE0 3.898 6.113 error 1.02% 1.67%

Table S1: Summary and comparison of experimental and calculated lattice parameters. For all the oxides investigated in this work, a = b. Errors are calculated with respect to the experimental values. Exp. stands for experimental lattice parameters.

	PAW PBE	3.868	6.002
	error	0.25%	-0.19%
	PAW PBE0	3.814	5.971
	error	-1.15%	-0.69%
PrAlO ₃	Exp. ⁵	5.33313	12.9729
	LCAO PBE	5.415	13.138
	error	1.54%	1.27%
	LCAO PBEO	5.353	13.009
	error	0.38%	0.27%
	PAW PBE	5.333	12.972
	error	0.00%	0.00%
	PAW PBEO	5.365	12.982
	error	0.60%	0.07%
BaO	Exp. ⁶	5.582	5.582
	LCAO PBE	5.498	5.498
	error	-1.50%	-1.50%
	LCAO PBEO	5.474	5.474
	error	-1.94%	-1.94%
	PAW PBE	5.614	5.614
	error	0.57%	0.57%
	PAW PBE0	5.614	5.614
	error	0.57%	0.57%
BaTiO ₃	Exp. ⁷	3.99095	4.0352
	LCAO PBE	3.996	4.124
	error	0.14%	2.21%
	LCAO PBE0	3.960	4.086
	error	-0.78%	1.25%
	PAW PBE	4.006	4.190
	error	0.37%	3.83%
	PAW PBE0	4.006	4.190
	error	0.37%	3.83%

Table S2: Comparison of the computed atomic charges of La and O in La-containing oxides. The atomic charges of La and O in the oxides were calculated using Mulliken population analysis and Bader charge analysis. The lattice structures were optimized before carrying out the charge analysis.

La Charge	O Charge	Compound	Theoretical Approximation	Charge Analysis Method	Reference	Basis Sets
2.359	-1.573	La_2O_3	Hartree-Fock	Mulliken	This work	LCAO
1.774	-1.183	La_2O_3	PBE	Mulliken	This work	LCAO
1.947	-1.298	La_2O_3	PBEO	Mulliken	This work	LCAO
2.428	-1.618	La_2O_3	Hartree-Fock	Bader	This work	PAW
2.001	-1.334	La_2O_3	PBE	Bader	This work	PAW
2.165	-1.444	La_2O_3	PBEO	Bader	This work	PAW
2.316	-1.471	LaAlO ₃	Hartree-Fock	Mulliken	This work	LCAO
1.825	-1.201	LaAlO ₃	PBE	Mulliken	This work	LCAO
1.944	-1.261	LaAlO ₃	PBEO	Mulliken	This work	LCAO
2.498	-1.815	LaAlO ₃	Hartree-Fock	Bader	This work	PAW
2.052	-1.689	LaAlO ₃	PBE	Bader	This work	PAW
2.244	-1.748	LaAlO ₃	PBEO	Bader	This work	PAW
2.043	-1.681	LaAlO ₃	PW-91	Bader	8	PAW
2.076	-1.268	LaMnO ₃	PW-91+U	Bader	8	PAW
2.09	-1.15	$\begin{array}{c} \text{La}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.25} \\ \text{Fe}_{0.75}\text{O}_{3\text{-}\delta} \end{array}$	PBE+U	Bader	9	PAW

Table S3: Comparison of the computed atomic charges of Sr and O in Sr-containing oxides. The atomic charges of Sr and O in the oxides were calculated using Mulliken population analysis and Bader charge analysis. The lattice structures were optimized before carrying out the charge analysis.

Sr Charge	O Charge	Compound	Theoretical Approximation	Charge Analysis Method	Reference	Basis Sets
1.848	-1.848	SrO	Hartree-Fock	Mulliken	This work	LCAO
1.734	-1.734	SrO	PBE	Mulliken	This work	LCAO
1.768	-1.768	SrO	PBEO	Mulliken	This work	LCAO
1.605	-1.605	SrO	Hartree-Fock	Bader	This work	PAW
1.424	-1.424	SrO	PBE	Bader	This work	PAW
1.475	-1.475	SrO	PBEO	Bader	This work	PAW
1.867	-1.580	SrTiO₃	Hartree-Fock	Mulliken	This work	LCAO
1.776	-1.384	SrTiO ₃	PBE	Mulliken	This work	LCAO
1.804	-1.437	SrTiO₃	PBE0	Mulliken	This work	LCAO
1.871	-1.407	SrTiO ₃	B3PW	Mulliken	10	LCAO
1.722	-1.707	SrTiO₃	Hartree-Fock	Bader	This work	PAW
1.593	-1.353	SrTiO ₃	PBE	Bader	This work	PAW
1.631	-1.448	SrTiO ₃	PBEO	Bader	This work	PAW
1.595	-1.266	SrTiO ₃	PW-91	Bader	8	PAW

Table 4: Comparison of the computed atomic charges of Pr in Pr-containing oxides. The atomic charge of Pr in its oxides were calculated using Mulliken population analysis and Bader charge analysis. The lattice structures were optimized before carrying out the charge analysis.

Pr	0	Compound	Theoretical	Charge	Reference	Basis
Charge	Charge		Approximation	Analysis		Sets
				Method		
1.801	-1.262	Pr ₂ O ₃	PBE	Mulliken	This work	LCAO
2.071	-1.381	Pr_2O_3	PBEO	Mulliken	This work	LCAO
1.963	-1.310	Pr ₂ O ₃	PBE	Bader	This work	PAW
2.112	-1.408	Pr ₂ O ₃	PBEO	Bader	This work	PAW
2.058	-1.301	PrAlO ₃	PBE	Mulliken	This work	LCAO
2.194	-1.369	PrAlO ₃	PBEO	Mulliken	This work	LCAO
2.021	-1.675	PrAlO ₃	PBE	Bader	This work	PAW
2.201	-1.734	PrAlO ₃	PBEO	Bader	This work	PAW

Table 5: Comparison of the computed atomic charges of Ba in Ba-containing oxides. The atomic charge of Ba in its oxides were calculated using Mulliken population analysis and Bader charge analysis. The lattice structures were optimized before carrying out the charge analysis.

Ba Charge	O Charge	Compound	Theoretical Approximation	Charge Analysis Method	Reference	Basis Sets
1.755	-1.755	BaO	PBE	Mulliken	This work	LCAO
1.790	-1.790	BaO	PBEO	Mulliken	This work	LCAO
1.436	-1.436	BaO	PBE	Bader	This work	PAW
1.496	-1.496	BaO	PBE0	Bader	This work	PAW
1.801	-1.391	BaTiO ₃	PBE	Mulliken	This work	LCAO
1.826	-1.442	BaTiO ₃	PBE0	Mulliken	This work	LCAO
1.541	-1.362	BaTiO ₃	PBE	Bader	This work	PAW
1.603	-1.455	BaTiO ₃	PBEO	Bader	This work	PAW
1.795	-1.386	BaTiO ₃	B3PW	Mulliken	10	LCAO
1.58	-1.15	Sm _{0.5} Ba _{0.5} CoO _{2.75}	PBE+U	Bader	11	PAW

Figure S1: Projected Pr density of states for its s-orbitals and d-orbitals in Pr_2O_3 (3a and 3b) and PrAIO₃ (3c and 3d). 3a and 3c are calculated using the GGA-PBE functional. 3b and 3d are calculated using the hybrid PBEO functional. The Fermi energy is marked as 0 eV on the energy scale in all plots.

Figure S2: Projected Ba density of states for its s-orbitals and d-orbitals in BaO (4a and 4b) and BaTiO₃ (4c and 4d). 4a and 4c are calculated using the GGA-PBE functional. 4b and 4d are calculated using the hybrid PBEO functional. The Fermi energy is marked as 0 eV on the energy scale in all plots.

References:

- (1) Koehler, W. C.; Wollan, E. O. Acta Crystallogr. 1953, 6 (8), 741.
- (2) Lehnert, H.; Boysen, B.; Schneider, S. J.; Frey, F.; Hohlwein, D.; Radaelli, P.; Ehrenberg, H. *Zeitschrift für Krist.* **2000**, *215* (9), 536.
- (3) Bashir, J.; Khan, R. T. A.; Butt, N. M.; Heger, G. *Powder Diffr.* **2002**, *17* (3), 222.
- (4) Abramov, Y. A.; Tsirelson, V. G.; Zavodnik, V. E.; Ivanov, S. A.; Brown, I. D. *Acta Cryst.* **1995**, *B51*, 942.
- (5) Zhao, J.; Ross, N. L.; Angel, R. J.; Carpenter, M. a; Howard, C. J.; Pawlak, D. a; Lukasiewicz, T. *J. Phys. Condens. Matter* **2009**, *21* (23), 235403.
- (6) Ghebouli, M. A.; Ghebouli, B.; Bouhemadou, A.; Fatmi, M.; Bouamama, K. *J. Alloys Compd.* **2011**, *509* (5), 1440.
- Kwei, G. H.; Lawson, a C.; Billinge, S. J. L.; Cheong, S. W. J. Phys. Chem. 1993, 97, 2368.
- (8) Lee, Y.-L.; Morgan, D. Phys. Rev. B 2015, 91 (19), 195430.
- Ritzmann, A. M.; Dieterich, J. M.; Carter, E. A. *Phys. Chem. Chem. Phys.* **2016**, *18*, 12260.
- (10) Piskunov, S.; Heifets, E.; Eglitis, R. I.; Borstel, G. *Comput. Mater. Sci.* **2004**, *29* (2), 165.
- (11) Olsson, E.; Aparicio-Anglès, X.; de Leeuw, N. H. *Phys. Chem. Chem. Phys.* **2017**, *19* (21), 13960.