| 1  | Supporting Information                                                                                                                        |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | Electronic, Magnetic, Catalytic, and Electrochemical properties of Two-Dimensional                                                            |
| 3  | Janus Transition Metal Chalcogenides                                                                                                          |
| 4  | Wenzhou Chen, <sup>a</sup> Yuanju Qu <sup>b</sup> , Lingmin Yao <sup>c</sup> , Xianhua Hou <sup>d</sup> , Xingqiang Shi <sup>*e</sup> and Hui |
| 5  | $Pan^{*a}$                                                                                                                                    |
| 6  | <sup>a</sup> Institute of Applied Physics and Materials Engineering, University of Macau, Macao                                               |
| 7  | SAR                                                                                                                                           |
| 8  | <sup>b</sup> College of Physics and Communication Electronics, Jiangxi Normal University,                                                     |
| 9  | Nanchang 330022, China                                                                                                                        |
| 10 | <sup>c</sup> School of Physics and Electronic Engineering, Guangzhou University, Guangzhou,                                                   |
| 11 | 510006, China                                                                                                                                 |
| 12 | <sup>d</sup> School of Physics and Telecommunication Engineering, South China Normal University                                               |
| 13 | Guangzhou 510006, P. R. China                                                                                                                 |
| 14 | <sup>e</sup> Department of Physics, Southern University of Science and Technology, Shenzhen                                                   |
| 15 | 518055, China                                                                                                                                 |
| 16 | * Corresponding Authors: huipan@umac.mo (H.P.); Tel: (853)88224427; Fax:                                                                      |
| 17 | (853)88222426; <u>shixq@sustc.edu.cn</u> (X. Q. S.)                                                                                           |
| 18 |                                                                                                                                               |
|    |                                                                                                                                               |

Table S1 Calculated total energies of the unit cells of the MSXs (M = Ti or V; and X = C, N,
Si or P) monolayers as a function of k-point grids.

| k-grid  | TiSC (eV) | TiSSi (eV) | TiSP (eV) | VSC (eV) | VSN (eV) | VSSi (eV) |
|---------|-----------|------------|-----------|----------|----------|-----------|
| 10×10×1 | -21.5471  | -18.0983   | -19.0169  | -21.7394 | -23.1386 | -18.5501  |
| 12×12×1 | -21.5471  | -18.0983   | -19.0198  | -21.7407 | -23.1386 | -18.5547  |
| 14×14×1 | -21.5471  | -18.0983   | -19.0230  | -21.7398 | -23.1387 | -18.5582  |
| 16×16×1 | -21.5471  | -18.0983   | -19.0248  | -21.7402 | -23.1387 | -18.5583  |
| 18×18×1 | -21.5471  | -18.0983   | -19.0235  | -21.7399 | -23.1387 | -18.5564  |
| 20×20×1 | -21.5471  | -18.0983   | -19.0225  | -21.7400 | -23.1387 | -18.5557  |
| 22×22×1 | -21.5471  | -18.0983   | -19.0225  | -21.7401 | -23.1387 | -18.5562  |

21

Table S2 Calculated total energies of the supercell  $(3 \times 3 \times 1 \text{ unit cells})$  of the MSXs (M = Ti or V; and X = C, N, Si or P) monolayers as a function of k-point grids.

| K-grid | TiSC (eV) | TiSSi (eV) | TiSP (eV) | VSC (eV)  | VSN (eV)  | VSSi (eV) |
|--------|-----------|------------|-----------|-----------|-----------|-----------|
| 1×1×1  | -193.8808 | -162.9363  | -170.4312 | -195.6340 | -207.8329 | -167.0570 |
| 3×3×1  | -193.9245 | -162.8849  | -171.2200 | -195.6605 | -208.2468 | -166.9888 |
| 5×5×1  | -193.9245 | -162.8849  | -171.1925 | -195.6642 | -208.2484 | -167.0172 |

24

Table S3 Calculated total energies of supercell (2×2×1 unit cell) of VSSi-1H monolayer as a
function of k-point grids. The energy cutoff is fixed at 700 eV.

|         | 1        |          | 1        | -        |
|---------|----------|----------|----------|----------|
| k grids | NM       | FM       | AFM-1    | AFM-2    |
| 5×5×1   | -74.2015 | -74.2415 | -74.2015 | -74.2016 |
| 7×7×1   | -74.2339 | -74.2207 | -74.2339 | -74.2339 |
| 9×9×1   | -74.2266 | -74.2354 | -74.2265 | -74.2266 |
| 11×11×1 | -74.2259 | -74.2315 | -74.2258 | -74.2259 |
| 13×13×1 | -74.2293 | -74.2322 | -74.2292 | -74.2293 |

27



Figure S1 Calculated phonon dispersions of the Janus MSXs (M = Ti or V; and X = C, N, Si or P)
monolayers: (a) TiSC-1T, (b) TiSC-1H, (c) TiSN-1T, (d) TiSN-1H, (e) TiSSi-1T, (f) TiSSi-1H, (g)
TiSP-1T, (h) TiSP-1H, (i) VSC-1T, (j) VSC-1H, (k) VSN-1T, (l) VSN-1H, (m) VSSi-1T, (n) VSSi1H, (o) VSP-1T, and (p) VSP-1H.



33

34 Figure S2 Anti-ferromagnetic (AFM) spin configurations of the VSC-1H monolayer: (a) AFM-

1 and (b) AFM-2; Yellow, green, and blue balls represent S, V, and C atoms, respectively; Blackand red allows represent down and up spins, respectively.



38 Figure S3 Calculated Li diffusion energies on the surfaces of Janus MSXs (M = Ti or V; and X = 39 C, N, Si or P): (a) S-surface of TiSC-1H, (b) C-surface of TiSC-1H, (c) S-surface of TiSSi-1H, (d) 40 Si-surface of TiSSi-1H, (e) S-surface of the TiSP-1H, (f) P-surface of the TiSP-1H, (g) S-surface 41 of the VSC-1H, (h) C-surface of the VSC-1H, (i) S-surface of the VSN-1T, (j) N-surface of the 42 VSN-1T, (k) S-surface of the VSSi-1H, and (l) Si-surface of the VSSi-1H. HC - the hexagonal

43 center, TM - on the top of M, TC - on the top of C, and B1 (B2) - the bridge site between the
44 corresponding stable site and intermediate position, as shown in text and figures 5&6.



46 Figure S4 Calculated Na diffusion energies on the surfaces of Janus MSXs (M = Ti or V; and X =
47 C, N, Si or P): (a) S-surface of TiSC-1H, (b) C-surface of TiSC-1H, (c) S-surface of TiSSi-1H, (d)
48 Si-surface of TiSSi-1H, (e) S-surface of the TiSP-1H, (f) P-surface of the TiSP-1H, (g) S-surface
49 of the VSC-1H, (h) C-surface of the VSC-1H, (i) S-surface of the VSN-1T, (j) N-surface of the
50 VSN-1T, (k) S-surface of the VSSi-1H, and (l) Si-surface of the VSSi-1H.



- 52 Figure S5 Calculated Mg diffusion energies on the surfaces of Janus MSXs (M = Ti or V; and X =
- 53 C, N, Si or P): (a) S-surface of TiSC-1H, (b) C-surface of TiSC-1H, (c) S-surface of TiSSi-1H, (d)
- 54 Si-surface of TiSSi-1H, (e) S-surface of the TiSP-1H, (f) P-surface of the TiSP-1H, (g) S-surface
- 55 of the VSC-1H, (h) C-surface of the VSC-1H, (i) S-surface of the VSSi-1H, and (j) Si-surface of

56 the VSSi-1H.

- 57 Table S4 Calculated H-adsorption energies (eV) on MSXs (M = Ti or V; and X = C, N, Si or P)
- 58 monolayers at difference adsorption sites:  $S_{ad}$  adsorption site; TX, HC-X, and TM-X refer to the
- 59 TX, HC, and TM sites on the X-surfaces of MSXs, respectively; TS, HC-S, and TM-S represent
- 60 the TS, HC, and TM sites on the S-surfaces of MSXs, respectively.

| S <sub>ad</sub> | TX    | HC-X  | TM-X  | TS    | HC-S | TM-S |
|-----------------|-------|-------|-------|-------|------|------|
| TiSC-1H         | -0.01 | 1.53  | 1.61  | 1.32  | 2.44 | 1.61 |
| TiSSi-1H        | 0.13  | 0.69  | 0.09  | 1.30  | 2.60 | 1.09 |
| TiSP-1H         | -0.99 | 1.59  | 0.22  | -0.29 | 2.25 | 0.50 |
| VSC-1H          | -0.56 | 1.00  | -0.01 | 0.61  | 1.85 | 2.18 |
| VSN-1T          | 2.04  | -0.34 | 1.60  | 0.91  | 1.24 | 1.32 |
| VSSi-1H         | -0.48 | 0.62  | -0.22 | 0.58  | 2.39 | 0.54 |

61



Figure S6 Calculated I- $\Delta G_H$  of (a) TiSX (X = C, Si, or P) and (b) VSX (X = C, N, or Si) monolayers as a function of H coverage on the S- and X- surfaces; Calculated A- $\Delta G_H$  of (c) TiSX (X = C, Si, or P) and (d) VSX (X = C, N, or Si) monolayers as a function of H coverage on the S- and Xsurfaces; I- $\Delta G_H$ : differential Gibbs free energy; A- $\Delta G_H$ : average Gibbs free energy.