Supporting Information

Diethyl (thiophen-2-ylmethyl) phosphonate: A Novel Multifunctional Electrolyte Additive for High Voltage Batteries

Yunmin Zhu^a, Xueyi Luo^a, Huozhen Zhi^a, Youhao Liao^{a,b}, Lidan Xing^{a,b},

Mengqing Xu^{a,b} Xiang Liu^{a,b}, Kang Xu^{c,*}, and Weishan Li^{a, b,*}

- a. School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
- b. Engineering Research Center of MTEES (Ministry of Education), Research Center of BMET (Guangdong Province), Engineering Lab. of OFMHEB (Guangdong Province), Key Lab. of ETESPG (GHEI), and Innovative Platform for ITBMD (Guangzhou Municipality), School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
- c. Electrochemistry Branch, Sensor and Electron Devices Directorate, Power and Energy Division, U.S. Army Research Laboratory, Adelphi, MD 20783, USA.

*Corresponding authors: k.xu.civ@mail.mil; liwsh@scnu.edu.cn

Captions:

Scheme S1. Synthesis path of diethyl (thiophen-2-ylmethyl) phosphonate (DTYP). Figure S1. ¹H NMR spectra of diethyl (thiophen-2-ylmethyl) phosphonate (DTYP) in TMS.

Table S1. Parameters from GC-MS of DTYP.

Figure S2. Rate capability of LiNi_{0.5}Mn_{1.5}O₄ electrodes in base and DTYP-containing electrolytes under room temperature.

Figure S3. Cyclic stabiliy (A) and Coulombic efficiency (B) of $LiNi_{0.5}Mn_{1.5}O_4$ electrodes in the electrolytes containing various contents of DTYP under room temperature at 0.5 C for the first three cycles and at 1 C for the subsequent cycles between 3 V and 4.9 V, followed by a constant potential of 4.9 V until the current reaches 0.1 C.

Figure S4. Cyclic stability (A) of $\text{LiNi}_{0.5}\text{Mn}_{1.5}\text{O}_4$ /graphite full cells with and without DTYP at 0.1 C for the activation and at 0.2 C for the follow cycles from 3.0~4.9 V, followed by a constant potential for current below 0.01 and 0.02 C; Charge/discharge profiles of the selected cycles in electrolytes without (B) and with (C) DTYP; (D) Mean charge/discharge voltages of the selected cycles in base and DTYP-containing electrolytes.

Figure S5. Cyclic stability and Coulombic efficiency of graphite electrodes in electrolytes with and without 0.5% DTYP under room temperature at 0.2 C between 0.005V and 2.5 V.

Figure S6. SEM images from different position angles under different resolutions from Fig. 2A for pristine (A) and the cycled $LiNi_{0.5}Mn_{1.5}O_4$ electrodes in base (B) and

DTYP-containing (C) electrolytes.

Table S2. Contents of Ni, Mn and Al that deposit on the lithium electrode after cycling in base and DTYP-containing electrolytes.

Figure S7. Photos of puncture experiments for pouch batteries with base and DTYP-containing electrolytes.

Scheme S1. Synthesis path of diethyl (thiophen-2-ylmethyl) phosphonate (DTYP).

Figure S1. ¹H NMR spectra of diethyl (thiophen-2-ylmethyl) phosphonate (DTYP) in TMS.

Retention time	Peak area	Peak high	Concentration
2.673	13188	7728	0.039
4.687	2244	1262	0.007
6.874	16428	7776	0.048
7.502	2420	1285	0.007
12.015	46181	24122	0.136
12.110	7418	3697	0.022
13.313	33814308	3144408	99.254
13.703	101130	43279	0.297
14.280	12732	6421	0.037
14.387	17570	8449	0.052
14.652	22632	10777	0.066
14.877	3700	1266	0.011
15.370	5156	2745	0.015
15.602	3263	1777	0.010

Table S1. Parameters from GC-MS of DTYP.

Figure S2. Rate capability of $LiNi_{0.5}Mn_{1.5}O_4$ electrodes in base and DTYP-containing electrolytes under room temperature.

Figure S3. Cyclic stability (A) and Coulombic efficiency (B) of $LiNi_{0.5}Mn_{1.5}O_4$ electrodes in the electrolytes containing various contents of DTYP under room temperature at 0.5 C for the first three cycles and at 1 C for the subsequent cycles between 3 V and 4.9 V, followed by a constant potential of 4.9 V until the current reaches 0.1 C.

Figure S4. Cyclic stability (A) of $\text{LiNi}_{0.5}\text{Mn}_{1.5}\text{O}_4$ /graphite full cells with and without DTYP at 0.1 C for the activation and at 0.2 C for the follow cycles from 3.0~4.9 V, followed by a constant potential for current below 0.01 and 0.02 C; Charge/discharge profiles of the selected cycles in electrolytes without (B) and with (C) DTYP; (D) Mean charge/discharge voltages of the selected cycles in base and DTYP-containing electrolytes.

Figure S5. Cyclic stability and Coulombic efficiency of graphite electrodes in electrolytes with and without 0.5% DTYP under room temperature at 0.2 C between 0.005V and 2.5 V.

Figure S6. SEM images from different position angles under different resolutions from Figure 2A for pristine (A) and the cycled LiNi_{0.5}Mn_{1.5}O₄ electrodes in base (B) and DTYP-containing (C) electrolytes.

Table S2. Contents of Ni, Mn and Al that deposit on the lithium electrode after cycling in base and DTYP-containing electrolytes.

	Ni (mg L ⁻¹)	Mn (mg L ⁻¹)	Al (mg L ⁻¹)
base	2.18	3.61	0.57
DTYP-containing	0.28	0.46	0.081

Figure S7. Photos of puncture experiments for pouch batteries with base and DTYP-containing electrolytes.