Supplementary Information for

Three-step cascade over one single catalyst: synthesis of 5-(ethoxymethyl)furfural from

glucose over hierarchical lamellar multi-functional zeolite catalyst

Yuanyuan Bai,^{abc} Lu Wei,^{a,d} Mengfei Yang,^e Huiyong Chen,^e Scott Holdren,^f Guanghui Zhu^g,

Dat. T. Tran^h, Chunli Yao,^c Runcang Sun,^c Yanbo Panⁱ and Dongxia Liu*^a

^a Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA

^b National Engineering Lab for Pulp and Paper, China National Pulp and Paper Research Institute Co. Ltd., Beijing, 100102, China

^c Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China

^d College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, PR China

^e School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, 710069, China

^f Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA

^g School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA

^h U. S. Army Research Laboratory, RDRL-SED-E, 2800 Powder Mill Road, Adelphi, MD, 20783, United States

ⁱDepartment of Chemical and Biomolecular Engineering, University of Akron, Akron 44325, USA

*Corresponding author: Prof. Dongxia Liu Email: liud@umd.edu Phone: (+1) 301-405-3522 Fax: (+1) 301-405-0523

S1. Textural properties of MFI-Sn/Al catalysts

Fig S1. SEM images of (a) MFI-Sn/Al (100/100), (b) MFI-Sn/Al (100/50), (c) MFI-Sn/Al (100/25), (d) MFI-Sn/Al (50/50), (e) MFI-Sn/Al (∞/100) and (f) C-MFI-Sn/Al (100/100), respectively.

Zeolite	$V_{micro}{}^{a}$	S _{micro} ^a	$\mathbf{S}_{\mathrm{ext}}^{a}$	V_t^{b}	V _{meso} ^c	$\mathbf{S}_{\text{BET}}^{d}$
	$[cm^3 g^{-1}]$	$[m^2 g^{-1}]$	$[m^2 g^{-1}]$	$[cm^3 g^{-1}]$	$[cm^{3}g^{-1}]$	$[m^2 g^{-1}]$
C-MFI-Sn/Al	0.144	317	196	0.667	0.523	513
(100/100)						
MFI-Sn/Al	0.078	150	197	0.488	0.410	347
(50/50)						
MFI-Sn/Al	0.107	254	221	0.650	0.543	474
(100/25)						
MFI-Sn/Al	0.108	255	198	0.548	0.440	453
(100/50)						
MFI-Sn/Al	0.093	215	191	0.470	0.377	406
(100/100)						
MFI-Sn/Al	0.092	180	374	0.859	0.767	554
(∞/100)						

Table S1. Texual properties of the MFI-Sn/Al zeolite catalysts with different Sn/Al ratios and synthesis time determined from N₂ isotherms

^a Determined from t-plot method

^b Determind by NLDFT method

^c V_{meso}=V_t-V_{micro} ^d Determined from multi-point Brunauer, Emmett, a Teller (BET) method

Zeolite	MFI-Sn/Al	MFI-Sn/Al	MFI-Sn/Al	MFI-Sn/Al	C-MFI-	MFI-Sn/Al
	(100/100)	(100/50)	(100/25)	(50/50)	Sn/Al	(∞/100)
					(100/100)	
Si/Sn ^a	100	100	100	50	100	∞
Si/Al ^a	100	50	25	50	100	100
Si/Sn ^b	75	51	53	31	70	∞
Si/Al ^b	67	32	20	37	65	72

Table S2 Concentration of Sn and Al in MFI-Sn/Al zeolite catalysts.

^a Calculated from synthesis recipe; ^b Determined from elemental analysis (ICP-AES).

S2. Effect of zeolite acidity on EMF synthesis from glucose over MFI-Sn/Al catalysts

Fig. S2 Catalytic conversion of glucose over MFI-Sn/Al zeolite catalysts ((a) MFI-Sn/Al (100/100); (b) MFI-Sn/Al (100/50); (c) MFI-Sn/Al (100/25); (d) MFI-Sn/Al (50/50)) as a function of reaction time at 413 K.

S3. Effect of carbohydrate type on EMF synthesis over MFI-Sn/Al catalyst

Fig. S3 Catalytic conversion of fructose over MFI-Sn/Al (100/100) versus reaction time at temperature of (a) 398 K, (b) 406 K, and (c) 413 K, respectively.

Fig. S4 Catalytic conversion of sucrose over MFI-Sn/Al (100/100) at different tempatures: (a)

398 K, (b) 406 K, and (c) 413 K;

Fig. S5 Synthesis of EMF from inulin by MFI-Sn/Al (100/100) at different tempatures: (a) 398

K, (b) 406 K, and (c) 413 K.