Supporting Information

BODIPY-diketopyrrolopyrrole-porphyrin Conjugate Small Molecules for Use in Bulk Heterojunction Solar Cells

L. Bucher, N. Desbois, E. N. Koukaras, C. H. Devillers, S. Biswas, G. D. Sharma, and

P. Gros

Table of contents

Fig. S1	Synthesis of porphyrin 3	p. 3
Fig. S2	Absorption spectra of all compounds in THF at 298 K	p. 3
Fig. S3	Absorption (black line), emission (red, green and purple lines) and	p. 4
	excitation (blue line) spectra of BD-pPor (a) in 2-MeTHF and (c) in thin	
	film, and BD-tPor (b) in 2-MeTHF and (d) in thin film, *artefact from	
	excitation beam ($2\lambda_{ex}$ harmonic)	
Fig. S4	Cyclic voltammograms of BD-pPor (black curve) and BD-tPor (red	p. 4
	curve) as thin films in 0.1 M TBAPF ₆ MeCN solution (scan rate = 1 V.s^{-1})	
Fig. S5	Cyclic voltammograms (in black) and DPV curves (in red, intensities of	p. 5
	all DPV curves have been multiplied by a factor of 2) for BD-tPor (top)	
	and BD-pPor (bottom) in $CH_2Cl_2 0.1 \text{ M TBAPF}_6 ([BD-tPor]=4 \times 10^{-4} \text{ M})$	
	and [BD-pPor]= 2×10^{-4} M, WE: Pt Ø=1 mm, CE: Pt, RE: SCE, $v = 100$	
	mV/s (CV) and 10 mV/s (DPV) respectively; subtract 0.46 V to get the	
	potential values vs. Fc/Fc ⁺)	
Fig. S6	¹ H NMR spectrum (CDCl ₃ , 500 MHz) of porphyrin 3	p. 6
Fig. S7	¹³ C NMR spectrum (CDCl ₃ , 125 MHz) of porphyrin 3	p. 6
Fig. S8	JMOD ¹³ C NMR spectrum (CDCl ₃ , 125 MHz) of porphyrin 3	p. 7
Fig. S9	LRMS MALDI/TOF spectrum of 3 (full)	p. 7
Fig. S10	HRMS MALDI/TOF spectrum of 3 (zoom)	p. 8
Fig. S11	¹ H NMR spectrum (CDCl ₃ , 300 MHz) of 4	p. 8
Fig. S12	LRMS MALDI/TOF spectrum of 4 (full)	p. 9

C.

Fig. S13	HRMS MALDI/TOF spectrum of 4 (zoom)		
Fig. S14	¹ H NMR spectrum (CDCl ₃ , 500 MHz) of 5		
Fig. S15	LRMS MALDI/TOF spectrum of 5 (full)		
Fig. S16	HRMS MALDI/TOF spectrum of 5 (zoom)		
Fig. S17	¹ H NMR spectrum (CDCl ₃ , 500 MHz) of BD-pPor		
Fig. S18	LRMS MALDI/TOF spectrum of BD-pPor (full)		
Fig. S19	HRMS MALDI/TOF spectrum of BD-pPor (zoom)		
Fig. S20	¹ H NMR spectrum (CDCl ₃ , 500 MHz) of BD-tPor	p. 13	
Fig. S21	LRMS MALDI/TOF spectrum of BD-tPor (full)	p. 13	
Fig. S22	HRMS MALDI/TOF spectrum of BD-tPor (zoom)	p. 14	
Fig. S23	Theoretical UV/Vis absorption spectrum of (a) BD-pPor and (b) BD-tPor	p. 14	
	(calculated using the B3LYP functional).		
Fig. S24	Optical absorption spectra of (a) BD-pPor .PC ₇₁ BM and (b)	p. 15	
	BD-tPor :PC ₇₁ BM thin films		
Table S1	Electronic excitations of BD-pPor	p. 16	
Table S2	Electronic excitations of BD-tPor	p. 17	

Fig. S1. Synthesis of porphyrin 3

Fig. S2. a) Absorption spectra of all compounds in THF at 298 K,b)zoom on the 560 - 850 nm region

Fig. S3. Absorption (black line), emission (red, green and purple lines) and excitation (blue line) spectra of **BD-pPor (a)** in 2-MeTHF and (c) in thin film, and **BD-tPor (b)** in 2-MeTHF and (d) in thin film, *artefact from excitation beam $(2\lambda_{ex} \text{ harmonic})$

Fig. S4. Cyclic voltammograms of **BD-pPor** (black curve) and **BD-tPor** (red curve) as thin films in 0.1 M TBAPF₆ MeCN solution (scan rate = 1 V.s⁻¹)

Fig. S5. Cyclic voltammograms (in black) and DPV curves (in red, intensities of all DPV curves have been multiplied by a factor of 2) for **BD-tPor** (top) and **BD-pPor** (bottom) in $CH_2Cl_2 0.1 \text{ M}$ TBAPF₆ ([**BD-tPor**]=4×10⁻⁴ M and [**BD-pPor**]= 2×10⁻⁴ M, WE: Pt Ø=1 mm, CE: Pt, RE: SCE, *v* = 100 mV/s (CV) and 10 mV/s (DPV) respectively; subtract 0.46 V to get the potential values *vs*. Fc/Fc⁺).

Fig. S7. ¹³C NMR spectrum (CDCl₃, 125 MHz) of porphyrin 3

Fig. S8. JMOD ¹³C NMR spectrum (CDCl₃, 125 MHz) of porphyrin 3

Fig. S9. LRMS MALDI/TOF spectrum of 3 (full)

Fig. S11. ¹H NMR spectrum (CDCl₃, 300 MHz) of 4

Fig. S13. HRMS MALDI/TOF spectrum of 4 (zoom)

Fig. S17. ¹H NMR spectrum (CDCl₃, 500 MHz) of BD-pPor

Fig. S18. LRMS MALDI/TOF spectrum of BD-pPor (full)

Fig. S19. HRMS MALDI/TOF spectrum of BD-pPor (zoom)

Fig. S20. ¹H NMR spectrum (CDCl₃, 500 MHz) of BD-tPor

Fig. S21. LRMS MALDI/TOF spectrum of BD-tPor (full)

Fig. S22. HRMS MALDI/TOF spectrum of BD-tPor (zoom)

Fig. S23. Theoretical UV/Vis absorption spectrum of (a) **BD-pPor** and (b) **BD-tPor** (calculated using the B3LYP functional).

Fig. S24. Optical absorption spectra of (a) BD-pPor:PC₇₁BM and (b) BD-tPor:PC₇₁BM thin films

solvent).			
<u>No.</u>	Wavelength (nm)	f	Main Contributions
1	777.14	2.270	H→L (91%)
3	658 82	0.153	H−2→L (76%)
5	030.02	0.155	H→L+1 (14%)
1	648 35	0.471	H−3→L (55%)
т	0-0.55	0.471	H→L+2 (21%)
			H→L+1 (57%)
5	642.14	1.264	H−2→L (16%)
			H−1→L+2 (15%)
			H→L+2 (48%)
6	627.55	0.016	H−3→L (34%)
			H−1→L+1 (14%)
9	581.57	0.389	H–6→L (59%)
			H−2→L+2 (19%)
			H−5→L+5 (13%)
10	569.36	0.062	H−3→L+1 (14%)
			H−3→L+4 (11%)
			H−2→L+3 (12%)
			H−6→L (20%)
11	565 30	0.010	H–4→L+6 (16%)
11	505.59	0.010	H−2→L+1 (14%)
			H−3→L+3 (12%)
			H–4→L (26%)
	556.78		H−3→L+6 (23%)
13		0.019	H–4→L+4 (17%)
			H–4→L+3 (11%)
			H−2→L+6 (11%)
			H−1→L+2 (27%)
14	556.08 555.83	0.068 0.018	H−2→L+1 (12%)
			H→L+1 (11%)
			H−5→L (31%)
15			H−2→L+5 (17%)
15			H−5→L+3 (16%)
			H−3→L+5 (12%)
22	492.08	0.229	H→L+3 (72%)
23	490.73	0.014	H–6→L+1 (83%)
21	151.01	0.005	H−1→L+4 (53%)
51	454.94	0.095	H−2→L+3 (31%)
	449.32	0.019	H−10→L (48%)
34			H−8→L (17%)
			H−3→L+3 (12%)
			H−3→L+4 (21%)
26	111 01	0.064	H−1→L+4 (21%)
30	444.04	0.004	H−2→L+4 (19%)
			H−2→L+3 (15%)
37	443.10	0.636	H−7→L (78%)

Table S1: Electronic excitations of **BD-pPor** (with non-negligible oscillator strengths, f), and the corresponding major contributions. Calculated using the M06 functional (and CF for solvent)

No.	Wavelength (nm)	f	Main Contributions
1	826.12	2.568	H→L (93%)
2	687 66	0.580	H→L+1 (58%)
2	062.00	0.500	H−2→L (25%)
3	674 27	0 548	H→L+2 (54%)
5	0/1.2/	0.5 10	H−3→L (23%)
4	665.15	0.157	H−1→L (92%)
5	657.11	0.381	H−2→L (68%)
-	007.11	0.201	$H \rightarrow L+1 (22\%)$
6	639.49	0.053	H−3→L (71%)
			$H \rightarrow L+2 (23\%)$
			$H=2\rightarrow L+1$ (25%)
8	589.89	0.657	$H \rightarrow L (14\%)$
			$H = 6 \rightarrow L (12\%)$
0	500.14	0.269	$H-1 \rightarrow L+2 (12\%)$
9	589.14	0.268	$H \rightarrow L (22\%)$
10	502.10	0.027	$H-2 \rightarrow L+2$ (28%)
10	583.10	0.027	$H-1 \rightarrow L+1 (21\%)$
			$H - 3 \rightarrow L + 1 (12\%)$
11	576.24	0.041	$H \rightarrow L+3 (34\%)$
			$H-I \rightarrow L+I (12\%)$
14	553.55	0.012	$H \xrightarrow{5} L (10\%)$
			$H = 5 \rightarrow L (1976)$
15	552.14	0.029	$H \xrightarrow{4} J (12\%)$
			$H_{-1} + 3 (36\%)$
	521.53	0.130	$H_3 = 1 + 4 (13\%)$
18			$H_2 \rightarrow I + 2 (12\%)$
			$H_{-2} \rightarrow I_{+3} (12\%)$
	517.46	0.011	$H_{-2} \rightarrow I_{+2} (39\%)$
20			$H^{-3} \rightarrow L^{+1} (20\%)$
_ •			$H = 3 \rightarrow L + 2 (17\%)$
	514.22		$H \rightarrow L + 4 (45\%)$
21		0.020	$H-3\rightarrow L+2$ (14%)
			$H-3\rightarrow L+3(14\%)$
	505.07	0.021	H−5→L+1 (40%)
22			H→L+5 (34%)
			H–4→L+2 (14%)
	504.55	0.026	H→L+6 (35%)
23			H–4→L+1 (22%)
			H–4→L+2 (17%)

Table S2: Electronic excitations of **BD-tPor** (with non-negligible oscillator strengths, *f*), and the corresponding major contributions. Calculated using the M06 functional (and CF for solvent).

			H−5→L+2 (14%)
			H–4→L+2 (29%)
24	499.07	0.015	H→L+5 (16%)
			H→L+6 (12%)
			H→L+6 (22%)
25	498.27	0.013	H→L+5 (16%)
			H−5→L+1 (14%)
27	487.63	0.041	H−6→L+2 (77%)
20	176 10	0.120	H−1→L+4 (56%)
29	4/6.48	0.130	H−2→L+3 (26%)
22	162 12	0.409	H−7→L (77%)
32	463.42	0.408	H→L+7 (10%)
			H−1→L+5 (51%)
33	462.54	0.025	H−1→L+6 (21%)
			H−2→L+6 (15%)
			H−1→L+6 (43%)
34	462.09	0.106	H−2→L+5 (21%)
			H−1→L+5 (17%)
			H−3→L+3 (25%)
35	454.40	0.034	H−2→L+4 (24%)
			H−8→L (20%)
			H−2→L+3 (30%)
36	452.83	0.110	H−1→L+4 (21%)
			H−3→L+4 (12%)
37	449.23	0.537	H→L+7 (51%)
			H–3→L+4 (21%)
38	448.49	0.016	H−8→L (61%)
			H−2→L+4 (19%)