Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Effect of crystal orientation on the segregation of aliovalent dopants at the surface of La_{0.6}Sr_{0.4}CoO₃

Fatih Pişkin,^{1,2,4} Roland Bliem,^{1,2} and Bilge Yildiz^{1,2,3}

¹Laboratory for Electrochemical Interfaces, ²Department of Nuclear Science and Engineering and ³Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA

⁴Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Turkey

List of Contents

- Figure S1. The surface morphology of the pellets annealed at 800 °C for 5h in stagnant air, synthetic air and pure oxygen.
- Figure S2. The distribution of precipitate number density and precipitate area coverage on differently oriented grains on pellets annealed at 800 °C for 2h and 5h.

Supplementary Figures

Figure S1. The surface morphology of the pellets annealed at 800 °C for 5h a, b) in stagnant air, c), d) in synthetic air and d, e) in pure oxygen. The precipitates form in a very different manner on each grain. More importantly, this grain-dependent precipitation behavior is valid for each annealing atmosphere, even though quantitatively and dimensionally different precipitation behavior took place.

Figure S2. The distribution of precipitate number density on differently oriented grains on pellets annealed at 800 °C for a) 2h and b) 5h. The distribution of precipitate area coverage on differently oriented grains on pellets annealed at 800 °C for c) 2h and d) 5h. The distribution of precipitate number density and precipitate area coverage on differently oriented grains were processed with only 10° tolerance angles. The pellets annealed at 800 °C for 2h and 5h represent a similar trend (grain orientation dependence of segregation area).