

Supplementary Information

Fig. S1 (a) AFM image of the BNNSs and (b) corresponding height information.

Fig. S2 The representative XRD image of BNNSs and OH-BNNSs. The peaks of BNNSs and OH-BNNSs at $2\theta \approx 27^{\circ}$, 42° , 44° , 55° results from the diffraction of (002), (100), (101), (102) and (004) peaks of h-BN.

Fig. S3 N 1s spectra of (a) BNNSs and (b) OH-BNNSs, and showing that the hydroxyl groups do not graft onto N atoms.

Fig. S4 STEM analysis and EDX element mapping of PVDF/BNNS and PVDF/OH-BNNS nanocomposites, respectively.

Fig. S5 (a) Yield stress and (b) interfacial interactivity parameter B of the PVDF/BNNS and PVDF/OH-BNNS nanocomposites. And lines in (b) were obtained by linear fitting in origin. The interfacial interaction can be evaluated by a semiempirical equation:

$$\sigma_{yc} = \frac{1 - \Phi_f}{1 + 2.5\Phi_f} exp(B\Phi_f)$$
. Where σ_{yc} and σ_{yp} are yield stress of the nanocomposite and polymer matrix, respectively, while Φ_f is the volume fraction of filler, and B is a parameter which indicates the interfacial interaction in the nanocomposites. If

 $ln[\sigma_{yc}(1+2.5\Phi_f)/(\sigma_{yp}(1-\Phi_f))]$ of fraction value is plotted against Φ_f of BNNSs and OH-BNNSs dispersed phase, parameter B can be calculated as a line slope. This assumes the σ_{yc} to be constant. And the values of interfacial interaction parameter B, evaluated from σ_y values are 2.787 and 1.997 for PVDF/OH-BNNS and PVDF/BNNS nanocomposites, respectively.

Fig. S6 TGA curves of (a) PVDF/BNNS and (b) PVDF/OH-BNNS nanocomposites.

Fig. S7 Frequency dependence of the dielectric constant of (a) PVDF/BNNS and (b) PVDF/OH-BNNS nanocomposites, respectively. Frequency dependence of the dielectric loss tangent (c) PVDF/BNNS and (d) PVDF/OH-BNNS nanocomposites.

Fig. S8 (a) XRD histogram of the PVDF, 6 wt% PVDF/BNNS, 6 wt% PVDF/OH-BNNS, 14 wt% PVDF/BNNS and 14 wt% PVDF/OH-BNNS samples; (b) enlarged view of XRD histogram (15–25°) of these samples.

Fig. S9 The FTIR spectra of A. PVDF, B. 6 wt% PVDF/BNNS, C. 6 wt% PVDF/OH-BNNS,

D. 14 wt% PVDF/BNNS and E. 14 wt% PVDF/OH-BNNS samples.

Table S1. The thermal diffusivity, density and specific heat capacity of PVDF-based nanocomposites.

Sample	α //	ρ	С
Sample	(mm²/s)	(g/cm³)	(kJ/kg K)
Neat PVDF	1.26	1.77	1.2
2 wt% BNNS	1.967	1.771	1.19
6 wt% BNNS	2.383	1.792	1.171
8 wt% BNNS	2.464	1.802	1.161
10 wt% BNNS	2.555	1.813	1.151

14 wt% BNNS	2.881	1.834	1.131
2 wt% OH-BNNS	2.452	1.771	1.190
6 wt% OH-BNNS	2.994	1.792	1.171
8 wt% OH-BNNS	3.206	1.802	1.161
10 wt% OH-BNNS	3.435	1.813	1.151
14 wt% OH-BNNS	3.66	1.834	1.131

Fig. S10 The stress-strain curves of (a) PVDF/BNNS nanocomposites and (b) PVDF/OH-BNNS nanocomposites.

Fig. S11 DSC curves of (a) PVDF/BNNS and (b) PVDF/OH-BNNS nanocomposites during the heating cycle.

Table S2. Crystallization temperature and crystallinity of the crystalline domain of PVDF-based nanocomposites.

Sample	T _c (℃)	Crystallinity (%)
Neat PVDF	132.720	44.59

2 wt% BNNS	154.922	44.53
6 wt% BNNS	154.125	40.52
8 wt% BNNS	151.195	37.69
10 wt% BNNS	148.862	43.51
14 wt% BNNS	151.190	43.90
2 wt% OH-BNNS	147.808	43.85
6 wt% OH-BNNS	150.526	41.38
8 wt% OH-BNNS	148.020	43.46
10 wt% OH-BNNS	150.698	42.66
14 wt% OH-BNNS	151.015	40.95