Supporting Information

Photoreduction of Carbon Dioxide of Atmospheric Concentration with Water

to Methane over CoAl-Layered Double Hydroxide Nanosheets

Kefu Wang,^{ab} Ling Zhang, ^a Yang Su, ^{ab} Dengkui Shao, ^{ab} Shuwen Zeng, ^{ab} Wenzhong Wang^{* a}

^a State Key Laboratory of High Performance Ceramics and Super fine Microstructure, Shanghai
Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P. R.
China.

^b University of Chinese Academy of Sciences, Beijing 100049, P.R. China.

Corresponding Author. *Phone 86-21-52415295. E-mail: wzwang@mail.sic.ac.cn

Figure S1. (a) TEM image of CoAl-LDH; (b) EDS profile of CoAl-LDH in selected area of

(a); (c-e) Elemental mappings of Co, Al, and O, respectively in selected area of (a).

Figure S2. UV-visible absorption spectrum of CoAl-LDH.

Figure S3. Time course of CO evolution under normal condition, without addition of CO₂, Xe

lamp irradiation, or CoAl-LDH.

Figure S4. Time course of CH₄ evolution under normal condition, without addition of CO₂, Xe lamp irradiation, or CoAl-LDH.

Figure S5. Time courses of CO and H₂ evolution for CoAl-LDH in the photocatalytic

conversion of CO₂ with water.

Figure S6. Time courses of CH_4 evolution for CoAl-LDH and P25 in the photocatalytic conversion of CO_2 with water.

Photocatalyst	Mass	cocatalyst	Reactant CO ₂ Reducing agent		Light source	Wavelength	Temperature	Products	Amounts	ref
	[mg]					[nm]	[K]		[µmol/(g*h)]	
NiM-LDH (M=Al, Ga, In)	100		500 µmol	0.4 mL H ₂ O	200 W Hg-Xe		RT	СО	1.9, 3.1, 3.6	[2]
MgM-LDH (M=Al, Ga, In)	100		500 µmol	0.4 mL H ₂ O	200 W Hg-Xe		RT	СО	2.4, 2.6, 1.6	[2]
ZnM-LDH (M=Al, Ga, In)	100		500 µmol	0.4 mL H ₂ O	200 W Hg-Xe		RT	СО	1.9, 0.7, 0.6	[2]
Zn ₃ Al-LDH	100		180 µmol	1.7 mmol H ₂	500W Xe arc	200-1100	305-313	CO, CH ₃ OH	0.62, 0.039	[3]
ZnCuAl-LDH	100		180 µmol	1.7 mmol H ₂	500W Xe arc	200-1100	305-313	CO, CH ₃ OH	0.37, 0.13	[3]
ZnGa-LDH	100		180 µmol	1.7 mmol H ₂	500W Xe arc	200-1100	305-313	CO, CH ₃ OH	0.08, 0.051	[3]
ZnCuCa-LDH	100		180 µmol	1.7 mmol H_2	500W Xe arc	200-1100	305-313	CO, CH ₃ OH	0.079, 0.17	[3]
ZnCr-LDH	50	Pt,Pd,Au		water vapour	200 W Hg-Xe	240-400	RT	CO	7.6, 4.7, 3.4	[4]
C ₃ N ₄ /MgAl-LDH	200	Pd	200 torr	water solution	500 W Hg-Xe		RT	CO, CH_4	0.2, 0.77	[5]
TiO ₂	150	Pd	suturated	1.5 mL H ₂ O	500 W Hg-Xe	>310	RT	СО	0.35	[6]
Cu ₂ O/TiO ₂ nanosheets	20		40 mL	6 μL H ₂ O	300 W Xe		RT	CH_4	2.78	[7]
PbS/TiO ₂		Cu		Saturated gas	300 W Xe	250-1800	RT	CO, CH ₄	0.82, 0.58	[8]
β-Ga ₂ O ₃	100		150 µmol	50 µmol H ₂	200 W Hg-Xe			СО	0.76	[9]
NaNbO ₃	100	Pt	80 Kpa	$3 \text{ mL H}_2\text{O}$	300 W Xe	>300		CH_4	4.9	[10]
Zn ₂ GeO ₄ Nanoribbons	100	Pt,RuO ₂	230 mL	1 mL H ₂ O	300W Xe arc			CH_4	6.5	[11]
ZnGa ₂ O ₄ /Zn ₂ GeO ₄	100		230 mL	0.4 mL H ₂ O	300W Xe arc	>200		CH_4	2.3	[12]
MgAl-LDO/TiO ₂ cuboids	100			water	100W Hg	365	323	CO	1.5	[13]
CaLa ₄ Ti ₄ O ₁₅	300		15 mL/min	360 mL H ₂ O	400W Hg	200-700	RT	CO	0.23	[14]
CaLa ₄ Ti ₄ O ₁₅	300	Ag	15 mL/min	360 mL H ₂ O	400W Hg	200-700	RT	CO	0.07	[14]
BaLa ₄ Ti ₄ O ₁₅	300	NiO	15 mL/min	360 mL H ₂ O	400W Hg	200-700	RT	CO	7.6	[14]
BaLa ₄ Ti ₄ O ₁₅	300	Cu	15 mL/min	360 mL H ₂ O	400W Hg	200-700	RT	CO	2	[14]
SrLa ₄ Ti ₄ O ₁₅	300		15 mL/min	360 mL H ₂ O	400W Hg	200-700	RT	CO	0.2	[14]
BiOCl	100		400 ppm	100 mL H ₂ O	500 W Xe	200-1000	RT	CO	1.1	[15]
ZnAl-LDH nanosheets	100		100 mL	0.4 mL H ₂ O	300W Xe arc	200-2500	RT	CO	7.6	[1]
HNb ₃ O ₈	100		159 mL	Water vapor	350 W Xe	200-2500	318	CH_4	3.58	[16]
KNb ₃ O ₈	100		159 mL	Water vapor	350 W Xe	200-2500	318	CH_4	1.71	[16]
P25/CoAl-LDH	50		1 bar	$5 \text{ mL H}_2\text{O}$	300W Xe	200-1200	RT	CO	2.21	[17]
CoAl-LDH/ P25	50		1 bar	$5 \text{ mL H}_2\text{O}$	300W Xe	200-1200	RT	CO	4.57	[18]
CoAl-LDH nanosheets	30		400 ppm	0.5 mL H ₂ O	500 W Xe	200-1000		CH ₄	4.3	This
			(0.25 mL)							work

Table S1. LDHs and other types of photocatalysts towards CO₂ reduction into hydrocarbons and CO reported in the literature ^[1]

Figure S7. CO₂ adsorption capacities of several kinds of LDH and P25.

Figure S8. XRD patterns of CoAl-n (n=0, 0.25, 0.5, 2).

Figure S9. CO₂ adsorption capacities of CoAl-n (n=0, 2).

Figure S10. XRD patterns of ZnAl-LDH, NiAl-LDH, CoFe-LDH and CoCr-LDH.

Figure S11. UV-visible absorption spectra of CoAl-LDH, ZnAl-LDH, NiAl-LDH, CoFe-LDH and

CoCr-LDH.

Figure S12. FT-IR spectra of ZnAl-LDH, NiAl-LDH, CoFe-LDH and CoCr-LDH.

Figure S13. Time courses of CH_4 evolution for several kinds of LDH in the photocatalytic conversion

of CO₂ with water.

References

(1) Zhao, Y.; Chen, G.; Bian, T.; Zhou, C.; Waterhouse, G. I.; Wu, L. Z.; Tung, C. H.; Smith, L. J.;
O'Hare, D.; Zhang, T. Adv. Mater. 2015, 27, 7824-7831.

(2) Teramura, K.; Iguchi, S.; Mizuno, Y.; Shishido, T.; Tanaka, T. Angew. Chem. Int. Ed. 2012, 51, 8008-8011.

(3) Ahmed, N.; Shibata, Y.; Taniguchi, T.; Izumi, Y. J. Catal. 2011, 279, 123-135.

(4) Katsumata, K.-i.; Sakai, K.; Ikeda, K.; Carja, G.; Matsushita, N.; Okada, K. Mater. Lett. 2013, 107, 138-140.

(5) Hong, J.; Zhang, W.; Wang, Y.; Zhou, T.; Xu, R. Chemcatchem 2014, 6, 2315-2321.

(6) Yui, T.; Kan, A.; Saitoh, C.; Koike, K.; Ibusuki, T.; Ishitani, O. ACS. Appl. Mater. Inter. 2011, 3, 2594-2600.

(7) Zhu, S.; Liang, S.; Tong, Y.; An, X.; Long, J.; Fu, X.; Wang, X. Phys. Chem. Chem. Phys. 2015, 17, 9761-9770.

(8) Wang, C.; Thompson, R. L.; Ohodnicki, P.; Baltrus, J.; Matranga, C. J. Mater. Chem. 2011, 21, 13452-13457.

(9) Teramura, K.; Tsuneoka, H.; Shishido, T.; Tanaka, T. Chem. Phys. Lett. 2008, 467, 191-194.

(10) Li, P.; Ouyang, S.; Xi, G.; Kako, T.; Ye, J. J. Phys. Chem. C 2012, 116, 7621-7628.

(11) Liu, Q.; Zhou, Y.; Kou, J.; Chen, X.; Tian, Z.; Gao, J.; Yan, S.; Zou, Z. J. Am. Chem. Soc.2010, 132, 14385-14387.

(12) Yan, S.; Wang, J.; Gao, H.; Wang, N.; Yu, H.; Li, Z.; Zhou, Y.; Zou, Z. Adv. Funct. Mater.
2013, 23, 1839-1845.

(13) Zhao, C.; Liu, L.; Rao, G.; Zhao, H.; Wang, L.; Xu, J.; Li, Y., Catal. Sci. Technol. 2015, 5, 3288-3295.

(14) Iizuka, K.; Wato, T.; Miseki, Y.; Saito, K.; Kudo, A. J. Am. Chem. Soc. 2011, 133, 20863-

20868.

(15) Zhang, L.; Wang, W.; Jiang, D.; Gao, E.; Sun, S. Nano Res. 2015, 8, 821-831.

(16) Li, X.; Pan, H.; Li, W.; Zhuang, Z. Appl. Catal. A-Gen. 2012, 413, 103-108.

(17) S. Kumar, M. A. Isaacs, R. Trofimovaite, L. Durndell, C. M. A. Parlett, R. E. Douthwaite, B.

Coulson, M. C. R. Cockett, K. Wilson and A. F. Lee, Appl. Catal. B: Environ., 2017, 209, 394-404.

(18) S. Kumar, L. J. Durndell, J. C. Manayil, M. A. Isaacs, C. M. A. Parlett. S. Karthikeyan, R. E.

Douthwaite, B. Coulson, K. Wilson and A. F. Lee, Part. Part. Syst. Charact., 2017, 35, 1700317.