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EXPERIEMNTAL  

Assembly of the solid-state ASC: 4 g H2SO4 and 4 g PVA were mixed with 40 mL deionized 

water under continuously stirring. The whole mixture heated at 85° C until it became clear. 

The PVA-H2SO4 system was prepared as described above as gel electrolyte. LC-WO3/TCC 

and TCC were served as the positive and negative electrodes, respectively. And then these 

two electrodes were placed face to face with area of 1 cm2 by the filter paper filled with 

PVA-H2SO4 electrolyte. Finally, solid-state ASC was finished after an hour of drying and 

the thickness was ~0.90 mm including two electrodes, separator and electrolyte.

Calculation Methods

The following equations are used for calculating SCs performance:

Areal capacity (mF cm-2), 
 CA =

I × t
S × ∆V

Volume capacity (mF cm-3),
 CV =

I × t
V × ∆V

Areal energy density (mW h cm-2), 
EA =

CA × ∆V2
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Volume energy density (mW h cm-3), 
EV =

CV × ∆V2
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Areal power density (mW cm-2),
 PA =

EA

t

Volume power density (mW cm-3), 
PV =

EV

t



Where I (A) is the current of discharge, t (s) is the discharge time, S represents the test area 

of electrode,  (V) represents the voltage change of the test, and V (cm-3) is the test ∆𝑉

volume of electrode.

Figure S1. a) and b) SEM image of the HC-WO3 and LC-WO3, respectively. 

Figure S2. a) and b) TEM image of the HC-WO3 and LC-WO3, respectively.



Figure S3 FTIR patterns of LC-WO3 and HC-WO3, respectively.



Figure S4. The XPS spectra of HC-WO3 and LC-WO3

Figure S5. a) The O1s and b) W4f XPS fine scan spectrum of HC-WO3 and LC-WO3.

Figure S6. N2 adsorption/desorption isotherms of LC-WO3 and HC-WO3.



Table S1. Porosity measurements of LC-WO3 and HC-WO3 using nitrogen 

adsorption/desorption tests.

Pore volume (cm3 g-1)Materials SBET
[a]

(m2 g-1)
VTotal

[b] VMicro
[c] VMicro/VTotal

Average pore 

width (nm)

LC -WO3 19 0.044 0.005 11% 8.3

HC -WO3 21 0.050 0.005 10% 8.4

[a] Brunuaer–Emmett–Teller surface area; [b] Calculated by single-point adsorption; [c] 

Calculated by t-plot method.

Figure S7. a) and b) GCD curves for LC-WO3 and HC-WO3, respectively.

.



Table S2. Resistance values of the LC-WO3 and HC-WO3 electrodes

Figure S8. a) and b) CV curves of LC-WO3 and HC-WO3 at various scan rates, respectively.

Sample Rs (Ω) Rct (Ω)

HC-WO3 0.17 1.5

LC-WO
3 0.27 0.9



Figure S9 a) XRD patterns of LC-WO3, MC-WO3 and HC-WO3, respectively. b) N2 

adsorption/desorption isotherms of LC-WO3, MC-WO3 and HC-WO3, respectively.

Table S3. Porosity measurements of MC-WO3 using nitrogen adsorption/desorption tests.

Pore volume (cm3 g-1)Materials SBET
[a]

(m2 g-1)
VTotal

[b] VMicro
[c] VMicro/VTotal

Average pore 

width (nm)

MC -WO3 29 0.043 0.007 16% 6.0

[a] Brunuaer–Emmett–Teller surface area; [b] Calculated by single-point adsorption; [c] 

Calculated by t-plot method.



Figure S10. a) and b) SEM image of the HC-WO3 and MC-WO3, respectively. 

Figure S11. a) and b) TEM image of the HC-WO3 and MC-WO3, respectively.



Figure S12 FTIR patterns of HC-WO3 and MC-WO3, respectively.

Figure S13. The O1s XPS fine scan spectrum of MC-WO3 



Figure S14. CV curves of negative and positive, respectively.

Figure S15. a) GCD curves for the solid-state flexible ACS device. b) CV curves for the 

solid-state flexible ACS device.



Figure S16. Nyquist plot of the device before and after cycling.

Table S4. Comparison of the electrochemical performance of solid-state TCC//LC-

WO3/TCC ASC in this work with other additives solid-state SCs reported in previous 

reports. 

Devices CA, device 
(mF/cm2)

Cv, 

device 
(F/cm3)

EA, stack 

(μWh/cm2)
Ev, stack 

(mWh/cm3)

TCC//LC-WO3/TCC, (this work) 1693 22.1 660 7.6
TCC//TCC,  Ref.1 920 10.2 128 1.4

Bi2O3-CC//MnO2-CC  Ref.2 97 / 43.4 /
ACC//ACC Ref.3 31 0.36 4.3 0.05

WO3-x/MoO3-x//PANI/carbon fabric, 
Ref.4

216 / / 1.9

NFL-WO3//TiO2@C@PPY Ref.5 658 / / 0.53
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