Electronic Supplementary Information

A highly efficient Ni-Mo bimetallic hydrogen evolution catalyst

derived from a molybdate incorporated Ni-MOF

Teng Wang,^a Rumei Jin,^a Xiuqi Wu,^a Jie Zheng,^{*a} Xingguo Li^{*a} and Kostya Ostrikov^{b, c}

a Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China. *E-mail: zhengjie@pku.edu.cn, xgli@pku.edu.cn

b Institute for Future Environments and Institute for Health and Biomedical Innovation, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia.

c CSIRO – QUT Joint Sustainable Processes and Devices Laboratory, P. O. Box 218, Lindfield, NSW, Australia.

Figure S1. (a) Nitrogen sorption isotherms and (b) cumulative pore volume-size curve of MoO_x@Ni-MOF and Ni-MOF.

Figure S2. Full-range XPS spectra of molybate incorporated Ni-MOF (Mo:Ni molar

ratio= 6:94)

Figure S3. Full-range XPS spectra of NiMo-C sample.

Figure S4. XRD patterns of the NiMo-C heated in NH_3 and Ar respectively.

Figure S5 Cyclic voltammetry tests in region without hydrogen evolution with different scan rates to determine the electrochemical double layer capacitance (C_{dl}) of (a) NiMo-C and (b) Ni-C.

Figure S6. Nitrogen sorption isotherms of Ni-C and NiMo-C. Surface area from BET method is calculated.

Figure S7. TEM images of the NiMo-C yielded from different temperature: a) 350 °C b) 550 °C and c) 650 °C.

Figure S8. LSV curves in 1 M KOH of the NiMo-C heated in NH_3 and Ar respectively.

Figure S9. (a) LSV curves and (b) Tafel plots in 0.5 M H₂SO₄ of the NiMo-C and Ni-C.

Figure S10. Structure characterization of the NiMo-C catalyst after galvanostatic test in Figure 5a: (a) the XRD pattern (b) TEM image, (c-d) XPS spectra in Ni $2p_{3/2}$ and Mo 3d region.

Table S1 Summary of the HER	catalytic activity of	f representative metal-carbon
-----------------------------	-----------------------	-------------------------------

nanocomposites in alkaline solutions

Catalyst	Electrolyte	Loading (mg/cm ²)	η (mV)	<i>j</i> (mA∙cm⁻²)	Ref.
MOF-derived NiMo-C	1М КОН	2	58	20	This work
MOF-derived Ni-C	1М КОН	2	111	20	This work
Ni-Mo nanopowders	1М КОН	2	80	20	1
MoC _x nano octahedron	1М КОН	0.8	151	10	2
Mo _x C-Ni@NCV	1 М КОН	1.1	126	10	3
NiMoN@carbon cloth	1 М КОН	2.5	109	10	4
NanoMoC@GS	1 М КОН	0.76	77	10	5
Ni/NiO@ MWCNTs	1М КОН	0.28 8	80 95	10 100	6

1. J. R. McKone, B. F. Sadtler, C. A. Werlang, N. S. Lewis and H. B. Gray, *ACS Catal.*, 2013, **3**, 166-169.

2. H. B. Wu, B. Y. Xia, L. Yu, X. Y. Yu and X. W. Lou, *Nat. Commun.*, 2015, **6**, 6512.

 S. Wang, J. Wang, M. Zhu, X. Bao, B. Xiao, D. Su, H. Li and Y. Wang, J. Am. Chem. Soc. 2015, 137, 15753-15759.

- 4. Y. Zhang, B. Ouyang, J. Xu, S. Chen, R. S. Rawat and H. J. Fan, *Adv.Energy Mater.*, 2016, **6**, 1600221.
- 5. Z. Shi, Y. Wang, H. Lin, H. Zhang, M. Shen, S. Xie, Y. Zhang, Q. Gao and Y. Tang, *J. Mater. Chem. A*, 2016, **4**, 6006-6013.
- M. Gong, W. Zhou, M. C. Tsai, J. Zhou, M. Guan, M. C. Lin, B. Zhang, Y. Hu, D. Y. Wang, J. Yang,
 S. J. Pennycook, B. J. Hwang and H. Dai, *Nat. Commun.*, 2014, 5, 4695.