Supplementary Information

A Green and Facile Strategy for the Low-Temperature Rapid Synthesis of Li₂S@PC-

CNT Cathodes with High Li₂S Content in Advanced Li-S Batteries

Sheng Liang, ^{†a} Yang Xia, ^{†a} Chu Liang, ^{*a} Yongping Gan,^a Hui Huang,^a Jun Zhang,^a Xinyong Tao,^a Wei Sun,^b Weiqiang Han^c and Wenkui Zhang, ^{*a}

^a College of Materials Science and Engineering, Zhejiang University of Technology,

Hangzhou 310014, People's Republic of China

^b Zhejiang Tianneng Energy Technology Co., Ltd, Huzhou, 313100, People's Republic of

China

^c School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027,

People's Republic of China

[†] These authors contributed equally to this work.

* Corresponding authors: <u>cliang@zjut.edu.cn</u> (C. Liang), <u>msechem@zjut.edu.cn</u> (W. Zhang).

Table of Contents

- 1. Figures
- 2. Tables
- 3. Notes and references

1. Figures

Fig. S1. XRD patterns of (a) CNT, (b) the solid residue of CNT–CS₂ mixture after heating to 330 °C, (c) the mixture of CNT–LiH, (d) the product of CNT–LiH after heating to 330 °C.

Fig. S2. Hydrogen signal of the gaseous products generated from the reaction between LiH and CS_2 .

Fig. S3. Hydrogen signal of the gaseous products generated from the reaction between LiH-CNT mixture and CS_2 .

Fig. S4. FESEM images of $Li_2S@PC$ composites. (a) low-magnification image; (b) High-magnification image.

Fig. S5 (a) STEM images of $Li_2S@PC-CNT$. (b-c) EDS sulfur and carbon mapping of the

square denoted in (a).

Fig. S6. CV curves of Li₂S@PC electrode.

Fig. S7. Rate capability of Li₂S@PC–CNT and other Li₂S–carbon electrodes.

2. Tables

Sample	C (wt.%)	H (wt.%)	S (wt.%)	Li (wt.%)
Li ₂ S	0.1	0.4	69.5	30.0
Li ₂ S@PC	11.3	0.4	61.6	26.7
Li ₂ S@PC-CNT	31.5	0.3	47.6	20.6

Table S1. Weight percent of elements in Li_2S , $Li_2S@PC$ and $Li_2S@PC$ -CNT.

 Table S2. The values of standard enthalpy of the formation for related compounds from the elements

Related	LiH (a)	$\operatorname{Li}_{\mathbf{S}}(\mathbf{s})$	$CS_{1}(\alpha)$	Н.	С
compounds	LIII (5)	$L_{12}S(3)$	$CS_2(g)$	112	C
Standard enthalpy	00.5	<i>111 1</i>	1167	0	0
of formation	-90.3	-441.4	110.7	0	0
$(kJ mol^{-1})$					

Li ₂ S-carbon electrodes	Current Density (mA g ⁻¹)	Capacity (mAh g ⁻¹) @ cycles number	Component content on current collector (wt %)		mass loading	Ref	
			Li_2S	Total carbon		1.01.	
Li ₂ S/N-doped graphene Li ₂ S/B-doped graphene	583	403@300 357@300	55-50	44.6–49.5 39.9–44.3	$2 \text{ mg cm}^{-2} (\text{Li}_2\text{S})$	1	
Li ₂ S@N-doped carbon nanofibers	233.2	598@50	50.6	47	3 mg cm^{-2}	2	
$Li_2S@graphene$ $Li_2S@Ni-P@graphene$ $Li_2S@Ni-S@graphene$ $Li_2S@Ni-P-S@$ graphene	583	256@300 490@300 425@300 540@300	36.4	38.2	$2 \text{ mg cm}^{-2} (\text{Li}_2\text{S})$	3	
MWCNT (20wt.%)-linked Li ₂ S	583	501@100	40	45	1 mg cm ⁻²	4	
C–Nano–Li ₂ S	116.6	648@50	54.2	35.8	$2.5-3 \text{ mg cm}^{-2}$	5	
Li ₂ S–graphene nanoplatelet aggregates	97.2	508@40	60	30	0.5 mg cm^{-2}	6	
Li ₂ S/GO@C	233.2	683@50	60	35	$0.7-0.9 \text{ mg cm}^{-2}$ (Li ₂ S)	7	
Li ₂ S@C composites	100	433@200	46.5	43.5	1 mg cm ⁻²	8	
Li ₂ S/N,P–C	583	520@100	62	33.3	2 mg cm^{-2} (Li ₂ S)	9	
Li ₂ S@graphene nanocapsules	160	530@200	80	15	2 mg cm ⁻²	10	
Li ₂ S/C	116.6	570@200	55.5	34.5	$3.3-3.5 \text{ mg cm}^{-2}$ (Li ₂ S)	11	
Li ₂ S@porous carbon	1166	252@200	56	34	1.0 mg cm^{-2} (Li ₂ S)	12	
Li ₂ S@PC-CNT	500 500	502@300 504@100	58.2	31.8	1.3 mg cm ⁻² 7.5 mg cm ⁻²	our	
Li ₂ S@PC	500 500	320@300 358@100	80.4	14.6	1.3 mg cm ⁻²	work	

 Table S3. Comparison of the electrochemical performance of various Li₂S-carbon cathodes for lithium-sulfur batteries.

3. Notes and references

- [1] G. Zhou, E. Paek, G.S. Hwang, A. Manthiram, Adv. Energy Mater., 2016, 6, 1501355.
- [2] M. Yu, Z. Wang, Y. Wang, Y. Dong, J. Qiu, Adv. Energy Mater., 2017, 7, 1700018.
- [3] G. Zhou, J. Sun, Y. Jin, W. Chen, C. Zu, R. Zhang, Y. Qiu, J. Zhao, D. Zhuo, Y. Liu, X.
 Tao, W. Liu, K. Yan, H.R. Lee, Y. Cui, *Adv. Mater.*, 2017, 29, 1603366.
- [4] F. Wu, A. Magasinski, G. Yushin, J. Mater. Chem. A, 2014, 2, 6064-6070.
- [5] L. Suo, Y. Zhu, F. Han, T. Gao, C. Luo, X. Fan, Y.–S. Hu, C. Wang, *Nano Energy*, 2015, 13, 467–473.
- [6] Z. Li, S. Zhang, C. Zhang, K. Ueno, T. Yasuda, R. Tatara, K. Dokko, M. Watanabe, *Nanoscale*, 2015, **7**, 14385–14392.
- [7] Y. Hwa, J. Zhao, E. Cairns, Nano Lett., 2015, 15, 3479-3486.
- [8] S. Liang, C. Liang, Y. Xia, H. Xu, H. Huang, X. Tao, Y. Gan, W. Zhang, *J. Power Sources*, 2016, **306**, 200–207.
- [9] J. Zhang, Y. Shi, Y. Ding, L. Peng, W. Zhang and G. Yu, Adv. Energy Mater., 2017, 7, 1602876.
- [10] G. Tan, R. Xu, Z. Xing, Y. Yuan, J. Lu, J. Wen, C. Liu, L. Ma, C. Zhan, Q. Liu, T. Wu,
- Z. Jian, R. Shahbazian–Yassar, Y. Ren, D. J. Miller, L. A. Curtiss, X. Ji and K. Amine, *Nat. Energy*, 2017, **2**, 17090.
- [11] X. Li, M. Gao, W. Du, B. Ni, Y. Wu, Y. Liu, C. Shang, Z. Guo and H. Pan, J. Mater. Chem. A, 2017, 5, 6471–6482.
- [12] N. Wang, N. Zhao, C. Shi, E. Liu, C. He, F. He, L. Ma, *Electrochimica Acta*, 2017, 256, 348–356.